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Statistical mechanics of the shallow water system
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We extend the formalism of statistical mechanics developed for the two-dimensional~2D! Euler equation to
the case of shallow water system. Relaxation equations towards the maximum entropy state are proposed,
which provide a parametrization of subgrid-scale eddies in 2D compressible turbulence.
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I. INTRODUCTION

Two-dimensional flows at high Reynolds numbers ha
the striking property of organizing spontaneously into larg
scale coherent vortices@1,2#. These vortices are ubiquitous i
geophysical and astrophysical flows with the well-known e
ample of jupiter’s great red spot, a huge vortex persisting
more than three centuries in a turbulent shear. They s
some common features with stellar systems, such as, el
cal or spherical galaxies that form after a phase of ‘‘viole
relaxation’’ @3–5#. They can also have applications in th
process of planet formation, which may have begun ins
persistant gaseous vortices born out of the protoplane
nebula@6–9#. Understanding and predicting the structure
these organized states is still a challenging problem.

Since the dynamics of these systems is highly nonlinea
deterministic description of the flow for late times is impo
sible and one must take recourse to statistical methods.
self-organization was first~qualitatively! explained by On-
sager@10#, using equilibrium statistical mechanics of sing
lar point vortices. Explicit results have been obtained
Montgomery @11#, Joyce and Montgomery@12#, and
Lundgren and Pointin@13# using a mean field approximatio
for this point vortex system. See Ref.@14# for a good review
of the early statistical approaches of two-dimensional~2D!
turbulence. The case of nonsingular vorticity fields has b
later on treated by Kuzmin@15#, Miller @16#, and Robert and
Sommeria@17#. The resulting equilibrium states are qualit
tively similar to the mean field results@11–13# of the point
vortex statistics, but there are quantitative differences.
apply this theory, the initial vorticity probability distribution
has to be discretized in vorticity levels, and each of the c
responding vorticity patches is supposed to mix in the fi
self-organized state. We shall, therefore, call this appro
the vortex patch statistical mechanics, although it applie
any continuous initial vorticity field: there is a well-define
limit as the discretization in vorticity levels is refined. This
unlike a discretization in terms of singular point vortice
whose statistical equilibrium depends on an arbitrary dis
bution of point vortex strengths.

While the point vortices form anN-body hamiltonian sys-
tem, with firmly rooted statistical mechanics, the justificati
of the vortex patch statistical mechanics is more elus
Nevertheless it has the advantage of providing a system
framework to tackle self-organization in 2D flows, with we
defined predictions. At a microscopic level, complex, inv
1063-651X/2002/65~2!/026302~13!/$20.00 65 0263
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cid, deformation of the vorticity field creates an intricate fil
mentation; however, if we introduce a macroscopic level
description~a ‘‘coarse graining’’! it can be shown that an
overwhelming majority of these microscopic configuratio
are close to a macroscopic state~the statistical equilibrium or
Gibbs state! obtained by maximizing a ‘‘mixing entropy’’
while accounting for all the constraints of the Euler equat
~the conservation of energy and of the global probability d
tribution of vorticity levels!. The resulting Gibbs state turn
out to be a steady solution of the Euler equations with sup
imposed small-scale fluctuations. Although these fluctuati
are eventually smoothed out by viscosity or other small-sc
effects~e.g., 3D turbulence in geophysical applications!, the
organization is controlled by the inertial stirring process.

The validity of the prediction, therefore, relies on the a
sumption that the inertial organization occurs faster than
change of vorticity levels due to viscosity~or other small-
scale smoothing process!, whose effect is enhanced by th
concomitant straining of vorticity structures. Comparisons
the predicted Gibbs states with the results of numerical sim
lations at high Reynolds numbers provide good quantita
agreement when stirring is sufficiently rapid to yield equili
rium before significant influence of viscous effects@18–20#.
In contrast, discrepancies appear when the final organiza
occurs after a long evolution time@19,21#. Similar conclu-
sions have been drawn by comparing statistical mecha
predictions with laboratory experiments@22#. The theory is
particularly useful to interpret electron plasma experime
@23#, whose dynamics is well described by the 2D Eu
equation~with no viscosity in the standard sense!. Modifica-
tions of the theory have been proposed in attempts to k
only the conservation laws that are the most robust in
presence of weak viscous effects@24#. Note that although
these different statistical mechanics approaches bear qu
tative differences, they share an essential common prope
they all predict a self-organization into a steady state wit
monotonic relationship between vorticity and stream fun
tion.

For applications to atmospheric or oceanic motion,
Coriolis force and density stratification have to be taken i
account. A first step in that direction is provided by th
quasigeostrophic model. The application of the vortex pa
statistical mechanics to this case is formally straightforw
as the flow is still assumed to be nondivergent, and the v
ticity is just replaced by a potential vorticity@25–28#. In the
presence of planetary curvature or topography~beta effect!,
©2002 The American Physical Society02-1
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the point vortices are no more solutions of the system,
another approach, using a truncated spectral model@29# had
been previously applied@30,31#. It provides a rationale for
understanding the eddy generation of mean currents ove
sloping margins of the oceans@32#. The resulting mean flow
is recovered as a particular limit of the vortex patch equil
rium states@27#.

The quasigeostrophic model is, however, of limited app
cability: the shallow water system, dynamically equivalent
a compressible 2D flow, provides a more accurate and g
eral description of geophysical flows@33#. It can be directly
generalized into multilayer models used as operational
dicting tools for oceanography@34#. Several numerical com
putations, for instance Refs.@35–37#, indicate inertial orga-
nization of vortical motion into coherent vortices, such
with the incompressible Euler equations. However, none
the statistical mechanics approaches have been previo
extended to the shallow water system. We propose her
attempt in this direction, stating the formalism for the gen
alization of the vortex patch statistical mechanics.

This statistical mechanics is closely related to the conc
of potential vorticity ~PV! mixing, widely used to interpre
oceanic or atmospheric data: for instance, the circulation
isotherm shape in Atlantic gyres can be predicted by an
sumption of uniform PV@38#. The idea of PV uniformization
has been used also to interpret features of atmospheric w
in jupiter’s atmosphere@39#. However, PV mixing is neces
sarily limited to some regions, in particular, due to the co
straints on energy conservation. The statistical mecha
quantifies this idea by predicting the most mixed state c
sistent with energy conservation. In a shallow water rotat
system, it yields zones of uniform PV separated by inte
jets~scaling as the Rossby radius of deformation!. This struc-
ture is illustrated in Fig. 1~taken from Bouchet and Dumon
@40#! showing a model of the great red spot of jupiter. T
present paper provides the formalism to extend such qu
geostrophic calculations to the more realistic shallow wa
model.

The properties of the shallow water system are first
called in Sec. II stressing the conservation laws, the ba
bone of the statistical mechanics approach. In Sec. III
procedure of Robert and Sommeria@17# is extended to the
shallow water system with discussion of simplified cases
Sec. IV. We still assume that the vorticity field creates in
cate filamentation but the divergence and water height~sur-
face density! fields are still smooth. These assumptions
justified for flows dominated by vortical motion at modera
Mach numbers, for which the generation of shocks is
effective. This is the case in most cases of atmospheri
oceanic dynamics.

The relaxation toward equilibrium is discussed in Sec
providing methods for determining the statistical equil
rium. It can be used also as a subgrid-scale modeling
shallow water turbulence, and this is probably the main pr
tical application of such statistical mechanics approac
@27,32#: indeed most cases of interest correspond to for
systems, which never really reach a statistical equilibriu
but should be permanently driven toward such equilibri
02630
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by eddy transport. Finally the case of particular domain
ometries is discussed in Sec. VI.

II. THE SHALLOW WATER EQUATIONS

Consider a fluid layer with thicknessh(x,y,t) submitted
to a gravity accelerationg on a rotating planet. We assum
that the layer is thin with respect to the characteristic len
scale of the horizontal motion. In that case, the velocity fi
u(x,y,t) can be assumed two dimensional and the vortic
v5vez5¹3u is directed along the vertical axis. We sha
assume for simplicity a plane geometry, with rotation vec
V directed along the vertical, but extension to a sph
would be straigthforward~we introduce the Coriolis effec
but no centrifugal force as the latter is incorporated in
gravity of the planet!. The time evolution of these quantitie
is determined by the shallow water equations@33#

]h

]t
1“•~hu!50, ~1!

]u

]t
1~v12V!3u52“B. ~2!

Here, the usual advective termu•“u has been expresse
using the well-known identity of vector analysisu•“u
5“(u2/2)1v3u, and the termu2/2 incorporated in the
Bernouilli function

FIG. 1. Relaxation towards statistical equilibrium in a Q
model of the great red spot~from Ref. @40#! . Three successive PV
fields are represented as gray levels. The initial condition~top! is
made of small PV patches. These patches organize into vor
~middle! that eventually merge into a single one~bottom!. This
sequence is obtained by the QG version of the relaxation equa
generalized to shallow water in Sec. V: entropy increases with t
while energy is exactly conserved. At equilibrium, the vortex is
oval spot of quasiuniform PV surrounded by strong gradients, c
responding to an annular jet.
2-2
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STATISTICAL MECHANICS OF THE SHALLOW WATER SYSTEM PHYSICAL REVIEW E65 026302
B5gh1
u2

2
, ~3!

together with the pressure termgh. Note that the shallow
water system can be viewed as a 2D flow of a compress
gas with densityh and equation of statep5gh2/2 (p is the
vertically integrated pressure! and our results could be
readily generalized to 2D compressible adiabatic flows.
shall often refer to the shallow water system as the ‘‘co
pressible case,’’ by opposition with the ‘‘incompressibl
case, for which Eq.~1! is replaced by“•u50.

One can easily check that the PV

q5
v12V

h
~4!

is conserved for each fluid parcel, i.e.,

dq

dt
[

]q

]t
1u•“q50. ~5!

Each mass elementhd2r is conserved during the course
the evolution. Together with Eq.~5!, this implies the conser
vation of the Casimir invariants

Cf5E f ~q!hd2r , ~6!

wheref is any continuous function of the potential vorticit
In particular, the momentsGn of the potential vorticity are
conserved

Gn5E qnhd2r . ~7!

The momentsn50,1,2 are, respectively, the total massM,
the circulationG, and the PV enstrophyG2. The energy

E5E h
u2

2
d2r1

1

2E gh2d2r , ~8!

involving a kinetic and a potential part, is also a conserv
quantity. Note finally that for a multiply connected doma
e.g., the annulus or the channel discussed in Sec. VI,
circulation along each boundary is conserved, in addition
G.

It will be convenient in the sequel to use a Helmho
decomposition of the momentumhu into a purely rotational
and a purely divergent part

hu52ez3“c1“w, ~9!

wherec andw are defined as solutions of the Poisson eq
tions

Dc52“3~hu!, c5const on each boundary,
~10!

Dw52“•~hu!, ]w/]z50 on each boundary.
~11!
02630
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The conditions at the domain boundary~with normal coordi-
natez) are the consequences of the wall impermeability.
here consider a domain with a single~outer! boundary, so we
can takec50 at this boundary~as c is defined within an
arbitrary gauge constant!.

For a steady solution, the mass conservation~1! reduces
to “•(hu)50, so thatw50 and

hu52ez3“c ~steady!. ~12!

Equation~5! then reduces tou•“q50, which implies thatq
is a functionF of the stream functionc

q5F~c!. ~13!

Finally, Eq. ~2! reduces to

~v12V!3u52“B. ~14!

Taking the dot product withu, we obtain u•“B50 or,
equivalently,B5B(c). This is known as the Bernouilli theo
rem. Substituting Eq.~12! in Eq. ~14!, we obtain a specific
relationship between the potential vorticityq and the Ber-
nouilli function B in the form

q52
dB

dc
. ~15!

Small perturbations to a state of rest, with uniform thic
nessH, satisfy linearized equations with two branches
solutions. For small scales, these are the usual surface w
on one hand, with purely divergent velocity and propagat
speedc5(gH)1/2, and steady vortical divergenceless mod
on the other hand. In nonlinear regimes, these two mo
interact. Vortical motion with scalel and typical vorticityv
fluctuates on time scalev21, so it emits waves at wavelengt
l;c/v. Hencel/ l is the inverse of the Mach numberc/u
based on the local velocityu;v l . Therefore, we expect tha
for our considered case of small Mach numbers, veloc
divergence and free surface deformation are much smoo
than the vorticity field~their wavelength is much larger!.

III. THE EQUILIBRIUM STATISTICAL MECHANICS

A. General principles and notations

For slow velocities, the shallow water system reduces
the quasigeostrophic~QG! equations, withh.cte, such that
Eq. ~1! reduces to the incompressibility condition“•u50.
Then the velocity field remains regular for any time, but
generally develops complex fine-scale vorticity filaments
that a deterministic description of the flow would require
rapidly increasing amount of information as time goes o
The idea of the statistical theory is to give up such adeter-
ministic description and refer to aprobabilistic description.
Therefore, the exact knowledge of the ‘‘fine-grained,’’ or m
croscopic potential vorticity field is replaced by the probab
ity density ~area fraction! r(r ,s) of finding the potential
vorticity level s at position r . We extend here the sam
definition to the shallow water case. The normalization co
dition yields at each point
2-3
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E r~r ,s!ds51. ~16!

The locally averaged field of potential vorticity is express
in terms of the probability density in the form

q̄5E r~r ,s!sds. ~17!

The statistical equilibrium will correspond to the probabili
field r(r ,s) that maximizes a mixing entropy with the inte
gral constraints brought by the conserved quantities.

In the incompressible case, the velocity field is suppo
smooth, as it is obtained from the vorticity field by a spat
integration process, and the integration over the local fl
tuations yieldsq̄ ~see Ref.@17# for a precise justification!. By
contrast the inviscid shallow water dynamics generally le
to singularities~shocks!, with associated energy dissipatio
even in the absence of viscosity. This is a source of fun
mental mathematical difficulty for the generalization of t
equilibrium statistical mechanics initially developed for t
Euler equations or QG system. Nevertheless, for the cas
small Mach numbers that we consider, shocks occur o
after a very long time~due to nonlinear steepening of surfa
waves!, and they involve a weak energy dissipation, sin
most of the energy remains in the vortical motion. Furth
more, fine-scale vorticity fluctuations behave in the sa
way as they do in the QG system, and only interact w
surface waves and flow divergence at much larger scale
discussed above. In conclusion, we shall assume that vo
ity fluctuates at small scale but we assume that velocity
smooth as well as its divergence and the heighth.

A macroscopic state is then defined by its probability fie
r(r ,s), its height fieldh(r ), and its flow divergence~both
assumed without microscopic fluctuations!. The velocity
field u(r ) can be deduced by integration from its divergen
and vorticityv̄5q̄h22V @using a Helmholz decompositio
for u analogous to Eqs.~9!–~11!#. The energy~8! depends
only on this smooth field, with negligible influence of loc
fluctuations, as in the incompressible case@17#. The conser-
vation of the Casimir invariant~6! is equivalent to the con
servation of the global distribution of potential vorticity~i.e.,
the total area of each level of potential vorticity weighted
h)

g~s!5E r~r ,s!h~r !d2r . ~18!

The microscopic moments of potential vorticity can be wr
ten

Gn5E g~s!snds5E qn̄h~r !d2r , ~19!

where

qn̄5E r~r ,s!snds, ~20!
02630
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and they are conserved during an inviscid evolution. By c
trast, the macroscopic moments of potential vorticityGn

cg

5* q̄nhd2r are not conserved forn>2, as they are partly
transferred into fine-grained fluctuations (G2

cg5* q̄2hd2r is
the coarse-grained potential enstrophy!.

The mixing entropy

S52E r~r ,s!ln r~r ,s!h~r !d2rds, ~21!

measures the number of microscopic configurations ass
ated with the same macroscopic field of potential vortici
The dependence inr is the same as for the incompressib
case@17#, and the factorh(r ) is introduced to ensure tha
entropy is conserved by mere macroscopic displacemen
fluid parcels. Indeed, the mass elementh(r )d2r is conserved
by fluid particle displacement instead of the surface elem
d2r in the incompressible case. At equilibrium, the system
expected to be in the most probable~i.e., most mixed! state
consistent with the constraints of the Euler equation. T
entropy~21! has been justified by rigorous mathematical
guments~in the incompressible case! but other forms have
been recently proposed@20#. Therefore, we shall consider
general form of entropy

S5E s„r~r ,s!…h~r !d2rds, ~22!

and find that Eq.~21! is the only expression leading to a
entropy extremum.

B. First order variations

According to the previous discussion, the most proba
macroscopic state is obtained by maximizing the entro
~22! with fixed energy~8!, global vorticity distribution~18!,
and local normalization~16!. This problem is treated by in
troducing Lagrange multipliers, so that the first variatio
satisfy

dS2bdE2E a~s!dg~s!ds

2E z~r !dS E r~r ,s!ds Dhd2r50. ~23!

The Lagrange multipliers are, respectively, the ‘‘inverse te
perature’’b, the ‘‘chemical potential’’a(s) of PV speciess,
andz(r ).

We shall takeh(r ), r(r ,s)h(r ), and“•u(r ) as indepen-
dent variables characterizing the macroscopic state. The
is easy to establish, by differentiating, respectively, E
~22!, ~18!, and~16!, that

dS5E @2rs8~r!1s~r!#dhd2rds1E s8~r!d~rh!d2rds,

~24!

dg~s!5E d~rh!d2r , ~25!
2-4
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hdS E r~r ,s!ds D5E d~rh!ds2E rdhds. ~26!

The variations of energy are conveniently expressed in te
of the Bernouilli functionB as

dE5E Bdhd2r1E hu•dud2r . ~27!

Then, using the Helmholtz decomposition~9! for the mo-
mentumhu, the second integral can be rewritten

E hu•dud2r52E ~“c3du!•ezd
2r1E “w•dud2r .

~28!

Integrating by parts with the identities“3(cdu)
5c“3du1“c3du and “•(wdu)5w“•(du)1“w•du,
and using the boundary conditions forc andw , we obtain

E hu•dud2r5E cdv̄d2r2E w“•~du!d2r . ~29!

Using Eqs.~16!, ~4!, and~17!, we have finally

dE5E Brdhd2rds1E csd~rh!d2rds

2E wd~“•u!d2r . ~30!

The variation~23! vanishes for any small changes of th
variables only if the coefficient of each independent varia
vanishes

d~rh! if s8~r!5bsc1a~s!1z~r !, ~31!

dh if 2s8~r!1
s~r!

r
5bB2z~r !, ~32!

d~“•u! if w50. ~33!

Note that the right-hand side of Eq.~32! is independent ofs.
This implies that the term on the left-hand side must b
constant~that we can take equal to 1 without loss of gen
ality!: 2s8(r)1s(r)/r51. This equation is easily inte
grated ins(r)5Ar2r ln r where A is an integration con-
stant. When substituted in Eq.~22!, using Eq. ~19!, this
yields

S52E r~r ,s!ln r~r ,s!h~r !d2rds1AM , ~34!

which is just the entropy~21! up to an additive constant term
AM ~which we can take equal to zero without loss of gen
ality!. Therefore, the entropy~21! is the only functional of
the form ~22! for which the maximization problem has
solution. This result is astounding because it is obtain
without any explicit reference to thermodynamical arg
ments.
02630
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C. The Gibbs states

Substituting explicitlys(r)52r ln r in Eq. ~31!, the op-
timal probability density can be expressed as

r~r ,s!5
1

Z~c!
g~s!e2bsc, ~35!

whereZ(c)[ez(r )11 andg(s)[e2a(s). The normalization
condition~16! leads to a value of the partition functionZ of
the form

Z5E g~s!e2bscds, ~36!

and the locally averaged potential vorticity~17! is expressed
as a function ofc according to

q̄5

E g~s!se2bscds

E g~s!e2bscds

5F~c!. ~37!

This expression can be rewritten

q̄52
1

b

d ln Z

dc
, ~38!

which is the same functional relation as in the case of
incompressible Euler flows@17# or quasigeostrophic equa
tions.

Differentiating Eq.~37! with respect toc, we check that
the variance of the potential vorticity can be written

q2[q2̄2q̄252
1

b
F8~c!, ~39!

or, alternatively@see Eq.~38!#

q25
1

b2

d2 ln Z

dc2
. ~40!

Therefore, the slope of the functionq̄5F(c) is directly re-
lated to the variance of the vorticity distribution. A simila
result @41# links the successive moments to the success
higher order derivatives ofF. Relation ~39! has the same
form and origin as the ‘‘fluctuation-dissipation’’ theorem
statistical field theory, wheredq̄/dc is interpreted as a sus
ceptibility @42#. Since q2.0, we find that the functionq̄
5F(c) is monotonic; it is decreasing forb.0 and increas-
ing for b,0 ~it is constant forb50). Another proof of this
result is given in Ref.@17#.

Substituting explicitly2s8(r)1s(r)/r51 in Eq. ~32!,
we have

B5
1

b
ln Z. ~41!

This relation shows that the Bernouilli function plays the ro
of a free energy in the statistical theory. We note that botB
2-5
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and q̄ are functions ofc, while w50 from Eq. ~33!, as it
should for steady flows. Furthermore, taking the derivat
of Eq. ~41! with respect toc and using Eq.~38!, we check
that the relationq̄52dB/dc required for a steady solutio
of the shallow water equation is satisfied. Therefore, the fl
selected by our purely statistical procedure is preserved
the flow evolution, so the statistical theory is indeed cons
tent with the dynamics.

In order to get an explicit prediction of the self-organiz
state for any given initial condition, the Eqs.~41! and q̄

52dB/dc must be solved. Usingq̄5(v̄12V)/h, with v̄
52“3(ez3“c/h), and the definition~3! of B, these two
equations can be written as two coupled partial differen
equations forc andh

2
Dc

h2
1

2V

h
1

1

h3
“c“h52

dB

dc
, ~42!

~“c!2

2h2
1gh5B~c!. ~43!

The function B(c)5 (1/b) ln Z(c) depends on the in
verse temperatureb and the functiong(s), and these quan
tities are implicitly defined by the integral constraints
energy ~8! and global PV probability distribution~18!,
g(s)5*@g(s)/Z(c)#e2bsch(r )d2r . This problem has sev
eral solutions in general~this is already the case for 2D in
compressible flows, see Refs.@43,44#!, but most of them are
not true entropy maxima: the first variations~23! are can-
celed but the sign of the second variations should
checked. A good method to select the entropy maxima i
use a relaxation process that, starting from the initial con
tion, increases entropy while keeping constant the inte
constraints. In the incompressible case, such a process
been performed by a continuous time relaxation equa
@45#, or directly by a discrete time relaxation algorithm@46#.
We shall extend the continuous time relaxation to the sh
low water system in Sec. V, but we first discuss some sim
particular cases.

IV. PROPERTIES OF THE GIBBS STATES
IN SOME PARTICULAR CASES

A. Particular q̄Àc relationships

The Gibbs states are characterized by the relation~37!

betweenq̄ and c, which is always monotonic, as shown
the preceding section. For numerical calculations of
Gibbs state, we need to discretize the PV levels, replac
the integrals over PV levels by sums. Calculations in
incompressible case@19,20,27# indicate that the result al
ready converges with a few PV levels. Keeping only tw
levels, q5s0 and q5s1, it is convenient to simplify the
discussion and is often representative of more general ca
Then, the probability distributionr just depends on a singl
probability p1 of finding the levels1 ~for instance!, with the
probability 12p1 of finding the complementary levels0.
This probabilityp1 is directly related to the PV average b
02630
e

w
y
-

l

e
to
i-
al
as
n

l-
le

e
g

e

es.

q̄5p1s11(12p1)s0, or reverselyp15(q̄2s0)/(s12s0).
Then, g(s) is the sum of two Dirac function terms,g(s)
5g0d(s2s0)1g1d(s2s1), so the expression~36! be-
comes Z5g0 exp(2bs0c)1g1 exp(2bs1c). The corre-
sponding expression~37! for q̄ reduces to

q̄5s01
s12s0

11l expb~s12s0!c
. ~44!

This relation corresponds to the Fermi-Dirac statistics. T
two unknown parametersl[g0 /g1 andb are indirectly de-
termined by the conserved quantities. The associated
nouilli function ~41! becomes

B5
1

b
ln g12s0c1

1

b
ln$l1eb(s02s1)c%. ~45!

The problem is also greatly simplified in the alternati
case for whichg(s) is a Gaussian

g~s!5g0e[ 2(s2s
*

)2]/2s2. ~46!

Then, the local probability distribution~35! is also a Gauss-
ian, and the corresponding Bernouilli function~41! is

B5
1

b
ln@g0~2ps2!1/2#1

1

2
s2bc22s* c ~47!

corresponding to a linear relationship

q̄52bs2c1s* . ~48!

According to Eq.~39! the variance of the potential vorticity
is then uniform, with valueq25s2 ~more generally, all the
even moments of the Gaussian are related tos2 by

(q2q̄)2n5(2n21)!!s2
n and the odd moments cancel out!.

This Gaussian local probability distribution is obtained
maximizing the entropy~21!, reducing the constraints of th
global distributiong(s) to its first momentsG0[M , G1 and
G2. This will be the true Gibbs state for a particular initi
distribution g(s) with higher order moments equal to th
global moments of this simplified Gibbs state. A linear re
tionship betweenq̄ andc can also be obtained for any dis
tribution g(s) in the limit of strong mixing wherebsc
!1, so that Eq.~37! can be linearized, as discussed by Ch
vanis and Sommeria@43#. In both cases, the result is equiv
lent to the state of minimum~coarse-grained! potential en-
strophyG2

cg with the constraints of givenE, M, andG.

B. Unidirectional solutions

We consider here unidirectional solutions such thatu
5u(y)ex . The equilibrium relationq̄52dB/dc then yields,
multiplying each member byhu5dc/dy and using the ex-
pressions~3! and ~4!,

g
dh

dy
1

2V

h

dc

dy
50. ~49!
2-6
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This condition of geostrophic balance can be readily in
grated in

h21
4V

g
c5H2, ~50!

whereH is an integration constant. Therefore, the heighth is
a decreasing function ofc.

A second relation is provided by the expression~43! of
the Bernouilli function. It is convenient to scale they coor-
dinate by the Rossby radius of deformation, writingy
5LRj with

LR5
AgH

2V
. ~51!

Then, Eq.~43! yields a first order ordinary differential equa
tion for h,

1

2 S dh

dj D 2

5H@B~h!/g2h#[U~h!. ~52!

The Gibbs state expression~41! of B(c) can be expressed a
a functionB(h) of h using Eq.~50!. Note that the solution
must be viewed generally in ax-wise translating frame o
reference, as discussed in Sec. VI, where the additional
servation law for momentum is included.

Equation~52! directly generalizes the QG equation di
cussed in Ref.@28#. Free jet solutions, separating two regio
of uniform heighth5h61, are possible, provided that th
function U(h) defined in Eq.~52! vanishes forh5h61 as
well as its derivativeU8(h). This is a good representation fo
the annular jet structure of the great red spot or the inte
eastward jet in jupiter’s northern hemisphere. Such a free
solution is possible, for instance, in the two PV level ca
~45!, with appropriate relationship between the Lagrange
rameters characterizing a phase equilibrium between the
uniform regions@28,47#.

Boundary currents, for instance in the half spacej.j0
~with any origin j0), are also typical solutions of Eq.~52!.
We shall take, by convention,c→0 asj→1`. Then,U(h)
and its derivativeU8(h) must vanish for the asymptoti
heighth5H, reached at large distancej @see Eq.~50!#. For
c→0, the Gibbs functionq(c) can be linearized to firs
order inc. Then, due to the relationq52dB/dc, B(c) is
quadratic inc, and using Eq.~50!, we haveU(h) of the form
U(h)5H2@(l/2)(h/H)42b(h/H)22(h/H)1c#, where l
52(LR

2H2/4)(dq/dc)(c50) . According to Eq.~39!, l has
the same sign as the inverse temperatureb. The conditions
U(H)5U8(H)50 imply the relationshipsb5l21/2 and
c5(11l)/2 between the coefficients. Then, Eq.~52! can be
written in the form

S df

dj D 2

5~12f!2
„11l~11f!2

…, with f[h/H,

~53!

in this case of a linearized functionq(c). Writing f51
1u and expanding Eq.~53! to lowest order inu, we find the
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asymptotic behavioru;exp(2A114lj) as j→1` ~this
imposesl>21/4). Returning to the original variables, w
find that the boundary current extends on a typical len
;LR /A114l. If b.0, this length is smaller than th
Rossby radius and ifb,0, it is larger.

In the case of a linear relationship betweenq andc, Eq.
~53! is valid in the whole spacej.j0. We have found par-
ticular analytical solutions that are representative of the g
eral behavior for anyl. For l50 ~i.e., b50 or q̄5const),
we find

f512e2j. ~54!

For l@1 ~i.e., b large!, we find

f5tanh~Alj!, ~55!

for an appropriate origin ofj such that the reduced thicknes
f remains positive. We can check explicitly on these e
amples thatu5f21 is attenuated exponentially on a typic
length 1/A114l. For l521/4, the decay length diverge
and we have a power law behavior

f5
~j1A3!223

~j1A3!211
~56!

leading tou;24/j2 asj→1`. This j22 behavior is valid
for any Bernouilli function whenl521/4.

These solutions describe boundary jets. We can show
there are no jet solutions separating two domains with u
form PV for a linearq2c relationship, unlike in the more
general case, for instance with two PV levels. A similar co
clusion was already reached in the QG case@28#. For the
above boundary jet solutions,h increases with distance to th
boundary, such that the pressure gradient balances a Co
force directed away from the boundary. Another possibil
for a boundary current in the opposite direction, is a confin
solution with h reaching the value zero at a finite wall di
tance. The absolute vorticity 2V2du/dy must vanish at this
position to ensure finiteness of the PV (2V2du/dy)/h. The
free surface slope remains finite, as well as the velocityu,
and both are related by the geostrophic balancedh/dy
522Vu. Such finite support solutions do not exist in th
QG case. Note finally that all the solutions discussed h
cancel the first variations of entropy~23! but they are not
necessarily entropymaxima. This has to be checked, for in
stance, by the relaxation equations discussed in Sec. V.

C. Axisymmetric solutions

For axisymmetric solutions,u5uu(r )eu ~where (r ,u) are
polar coordinates! andhuu52dc/dr. Then, Eq.~49! is re-
placed by the cyclostrophic balance

gh
dh

dr
5

1

hr S dc

dr D 2

22V
dc

dr
. ~57!

Whenhuu52dc/dr>0 ~cyclone!, h is an increasing func-
tion of r, so the vortex core is a trough. In the opposite ca
2-7
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P. H. CHAVANIS AND J. SOMMERIA PHYSICAL REVIEW E65 026302
uu<0 ~anticyclone!, the vortex core is a bump in geostroph
regimes. However, for large velocities~Rossby number
larger than unity!, the termuu

2 /r dominates, leading alway
to a trough.

Combining this relation~57! with the expression~43!, one
gets a couple of first order ordinary differential equations
the variablesc andh. As in the unidirectional case, the so
lution depends on two constants of integration and
Lagrange parameters, which are for example,g1 , b, andl in
the case with two PV levels. This solution must be viewed
general in a rotating frame of reference, due to the additio
conservation of angular momentum, as discussed in Sec

V. RELAXATION EQUATIONS

A. The maximum entropy production principle

Relaxation methods are convenient to compute the st
tical equilibrium resulting from any initial condition. Th
aim is to increase entropy in successive steps while kee
constant all the conserved quantities. Turkington a
Whitaker@46# have implemented a relaxation method to c
culate the Gibbs states obtained with the Euler equatio
Robert and Sommeria@45# had previously proposed relax
ation equations in the form of a parametrization of subgr
scale eddies that drives the system toward statistical equ
rium by a continuous time evolution. Such relaxati
equations can be used both as a realistic coarse resol
model of the turbulent evolution, and as a method of de
mination of the statistical equilibrium resulting from th
evolution~see Ref.@5# for a short review!. We here general-
ize this approach to the shallow water system.

We first decompose the vorticityv and velocityu into a
mean and fluctuating part, namely,v5v̄1ṽ, u5ū1ũ,
keepingh smooth. Taking the local average of the shallo
water equations~1! and ~2!, we get

]h

]t
1“•~hū!50, ~58!

]ū

]t
1~v̄12V!3ū52“B̄2ez3Jv , ~59!

B̄5gh1
ū2

2
, ~60!

where the currentJv5ṽ ū̃ represents the correlations of th
fine-grained fluctuations. Although we have neglected
fluctuation energyũ2 in front of ū2 ~as well as fluctuations o

h), we keep the correlationsJv5ṽ ū̃ , which represent the
PV transport by subgrid-scale eddies. This assumption is
tified since, denoting bye the typical scale of vorticity fluc-

tuations, we haveũ2;e2v̄2 and ṽ ū̃;ev̄2@ũ2 ~while ṽ

;v̄).
We deduce an equation for the evolution of the poten

vorticity ~4!, taking the curl of Eq.~59! and using Eq.~58!
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]t
~hq̄!1“•~hq̄ ū!52“•Jv . ~61!

This equation can be viewed as a local conservation law
the circulationG5* q̄hd2r . We shall determine the unknow
currentJv by the thermodynamic principle of maximum en
tropy production~MEP! @45#. For that purpose, we need t
consider not only the locally averaged PV fieldq̄, but also
the whole probability distributionr(r ,s,t) now evolving
with time t. The conservation of the global vorticity distribu
tion g(s)5*rhd2r can be written in the local form

]

]t
~hr!1“•~hrū!52“•J, ~62!

whereJ(r ,s,t) is the~unknown! current associated with th
level s of potential vorticity. Integrating Eq.~62! over all the
PV levelss, using Eq.~16!, and comparing with Eq.~58!,
we find the constraint

E J~r ,s,t !ds50. ~63!

Multiplying Eq. ~62! by s, integrating over all the PV levels
using Eq.~17!, and comparing with Eq.~61!, we get

E J~r ,s,t !sds5Jv . ~64!

We can express the time variation of energyĖ[dE/dt in
terms of J, using Eqs.~8! and ~59!, leading to the energy
conservation constraint

Ė5E Jshū'd2rds50, ~65!

where ū'[ez3ū. Using Eqs.~21! and ~62!, we similarly
express the rate of entropy production as

Ṡ52E J•“~ ln r!d2rds. ~66!

The MEP principle consists in choosing the currentJ that
maximizes the rate of entropy productionṠ respecting the
constraintsĖ50, Eq. ~63! and *(J2/2r)ds<C(r ,t). The
last constraint expresses a bound~unknown! on the value of
the diffusion current. Convexity arguments justify that th
bound is always reached so that the inequality can be
placed by an equality. The corresponding condition on fi
variations can be written at each timet

dṠ2b~ t !dĖ2E z~r ,t !dS E Jds Dd2r

2E D21~r ,t !dS E J2

2r
ds Dd2r50, ~67!

and leads to a current of the form
2-8
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J52D~r ,t !@“r1b~ t !srhū'2z~r ,t !r#. ~68!

The Lagrange multiplierz(r ,t) is determined by the con
straint ~63!, which leads to

J52D~r ,t !@“r1b~ t !r~s2q̄!hū'#. ~69!

This optimal current is similar to the one obtained in or
nary incompressible 2D turbulence except that the termhū'

now replaces“c. The impermeability condition impose
that the normal component of the velocity and of the curr
vanishes at the wall. We, therefore, have the boundary c
ditions

n•ū50 ~on each boundary!, ~70!

n•“r52b~ t !r~s2q̄!hn•ū' ~on each boundary!,
~71!

wheren is a unit vector normal to the wall.
The diffusion coefficientD is not determined by the MEP

as it depends on the unknown boundC on the current. It can
be determined by more systematic procedures inspired f
kinetic theories of plasma physics and stellar dynamics a
Refs.@4,48–50# for the Euler equations. In that context, th
diffusion coefficient is equal to the variance of the veloc
fluctuations multiplied by a correlation time scale. The va
ance of the velocity fluctuations can, in turn, be expresse
terms of the vorticity distribution by using the Biot and S
vart formula. The precise form of the diffusion coefficient
important in order to take into account kinetic confineme
and incomplete relaxation@51#. However, for the purpose o
reaching the Gibbs state, the diffusion coefficient can sim
be chosen arbitrarily. We shall show below thatD must nev-
ertheless be positive so as to ensure entropy increase.

The conservation of energy~65! at any time determines
the evolution of the Lagrange multiplierb(t) according to

b~ t !52

E D“q̄hū'd2r

E D~q2̄2q̄2!~hū'!2d2r
. ~72!

We can now provide an explicit form for the vorticit
currentJv and introduce it back in the shallow water equ
tion ~59!. Indeed, using Eqs.~69! and ~17!, we find

Jv52D@“q̄1b~ t !~q2̄2q̄2!hū'#. ~73!

Substituting Eq.~73! in Eq. ~59!, we obtain

]ū

]t
1~v̄12V!3ū52“B̄1D@ez3“q̄2b~ t !~q2̄2q̄2!hū#.

~74!

Sinceb(t)<0 in relevant situations, the last term in Eq.~74!

represents aforcing proportional toū that compensates th
diffusion caused by the termez3“q̄;Dū. This additional

term depends on the local PV varianceq2̄2q̄2, related to the
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probability distributionr, and we need to keep track of it b
solving the probability transport equation~62! in addition to
the modified shallow water system~58! and~74!. This set of
equations increases the entropy~at an optimal rate! while
preserving all the conservation laws of the initial invisc
shallow water system. We now check that the steady s
tions reached by these relaxation equations are indeed
Gibbs states.

B. Relaxation towards statistical equilibrium

The entropy production~66! can be written

Ṡ52E J

r
@“r1br~s2q̄!hu'#d2rds

1bE J~s2q̄!hu'd2rds. ~75!

Using Eqs.~63! and~65!, the second integral is seen to ca
cel out. Substituting Eq.~69! in the first integral, we find

Ṡ5E J2

Dr
d2rds, ~76!

which is positive provided thatD>0. A stationary solution
Ṡ50 is such thatJ50 yielding, together with Eq.~9!,

“~ ln r!1b~s2q̄!“c50. ~77!

For any reference PV levels0, it writes

“~ ln r0!1b~s02q̄!“c50. ~78!

Subtracting Eqs.~77! and ~78!, we obtain“ ln(r/r0)1b(s
2s0)“c50, which is immediately integrated into

r~r ,s!5
1

Z~r !
g~s!e2bsc, ~79!

where Z21(r )[r0(r )ebs0c(r ) and g(s)[eA(s), A(s) is a
constant of integration. Therefore, entropy increases until
Gibbs state~35! is reached, withb5 lim

t→`
b(t). Further-

more, we can show~Chavanis, in preparation! that a station-
ary solution of these relaxation equations is linearly stable
and only if, it is an entropymaximum. Therefore, this nu-
merical algorithm selects the maxima~and not the minima or
the saddle points! among all critical points of entropy. Whe
several entropy maxima subsist for the same values of
constraints, the choice of equilibrium depends on a com
cated notion of ‘‘basin of attraction’’ and not simply wheth
the solution is a local or a global entropy maximum. Simi
results are obtained for a simple model of gravitational d
namics@52#.

C. Simplified cases

In the case of two PV levelss0 and s1, the transport
equation~62! for the probabilityp1 is equivalent to the trans
port equation forq̄ @since q̄5s01p1(s12s0)#, which is
2-9
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already obtained from the curl of the shallow water equat
~74!. Therefore, the relaxation equations reduce to the m
fied shallow water system

]h

]t
1“•~hu!50, ~80!

]u

]t
1q̄hez3u52“S u2

2
1ghD1D@ez3“q̄2b~ t !q2hu#,

~81!

q̄5
~“3u!•ez12V

h
, q25~ q̄2s0!~s12q̄!, ~82!

b~ t !52

E Dhu'“q̄d2r

E Dq2u'
2 h2d2r

, ~83!

n•“q̄52b~ t !q2hn•u' ~on each boundary!, ~84!

n•u50 ~on each boundary!, ~85!

where we have omitted the overbar onu, and the expression

~82! of q25q2̄2q̄2 is easily obtained for a probability dis
tribution with two valuess0 and s1. The numerical imple-
mentation of this system will lead to the two PV level Gib
state.

Statingq25const instead of the expression~82! yields the
Gaussian Gibbs state with linear relationship betweenq̄ and
c. Then, the coefficientq2b used in Eq.~81! is directly
obtained from Eq.~83!. This is sufficient for the purpose o
finding the statistical equilibrium, but more refined rela
ation models can be used as in the context of QG mo
@27,53#.

D. The incompressible limit

The case of ordinary 2D incompressible turbulence is
covered in the limith→H, q→v and u52ez3“c. The
relaxation equation~74! then becomes

]ū

]t
1~ ū•“ !ū52

1

r
“p1D@Dū2b~ t !v2ū#, ~86!

where we have used the well-known identity of vector ana
sis Dū5“(“•ū)2“3(“3ū), which reduces for a two-
dimensional incompressible flow toDū5ez3“v̄. Equation
~86! is valid even ifD is space dependant unlike with a usu
viscosity term. In previous publications this equation w
given only in its vorticity form

]v̄

]t
1“~v̄ū!5“@D$“v̄1b~ t !v2“c%#, ~87!

and the equivalence with Eq.~86! is not obvious at first sigh
when D is space dependent. At equilibrium, we have fro
Eq. ~86! the identity
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Dū5bv2ū, ~88!

which can be deduced directly from the Gibbs state. Inde
for a stationary solutionv̄5F(c), the previous identityDū
5ez3“v̄ becomesDū52F8(c)ū that is equivalent to Eq.
~88! for a Gibbs state thanks to Eq.~39!.

We now account for a small deformation of the fluid lay
but assume that the elevation with respect to the aver
thicknessH is weak, so that

h5H~11h! with h!1. ~89!

To the first order, the flow is incompressible and Eq.~1!
reduces to“•u50, or equivalentlyu52ez3“c @there is a
factor H with the previous definition~9!#. In the quasigeo-
strophic limit of small Rossby numbersv!V, the momen-
tum equation~2! reduces at zero order to the geostroph
balance

u5
gH

2V
ez3“h or c52

gH2

2V
h. ~90!

The expression for the potential vorticity then reduces to

z[Hq22V.v1
c

LR
2

, ~91!

using the Rossby radius of deformation~51!. The term
(1/LR

2)c in Eq. ~91! creates a shielding of the interactio
between vortices~similar to the Debye shielding in plasm
physics! on a length scale;LR . In the limit 1/LR→0, we
recover the 2D incompressible equations. For finiteLR we
can extend the statistical theory of the 2D Euler equation
the QG case by simply replacing the vorticityv̄ with the
potential vorticityz̄ @25–28#.

VI. THE CASE OF A CIRCULAR DOMAIN
OR A CHANNEL

A. Statistical equilibrium

In a disk, the angular momentum

L5E h~r3u!zd
2r ~92!

is conserved. This additional constraint can be accounted
by adding a termbldL in the first order variation~23!. We
can write dL5*dh(r3u)zd

2r1*h(ez3r )•dud2r , and the
second term can be expressed in terms ofdv̄ andd(“•u) by
a Helmholtz decomposition ofh(ez3r ) analogous to Eq.~9!,
followed by an integration by part. This is analogous to t
fomulas~28! and ~29! used for expressing the energy vari
tion. We can combine the energy and momentum variati
by defining

h@u2l~ez3r !#52ez3“c81“w8, ~93!

instead of Eq.~9!. Adding the new terms in Eqs.~31! and
~33! yields the Gibbs states~35! and ~41! for the velocity
2-10
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u85u2l(ez3r ) seen in the reference frame rotating at a
gular velocity l. Accordingly, the expression of the Be
nouilli function must be modified by a term of centrifug
force: we must useB8(c8)5gh1(u82/2)2l2r 2 instead of
B(c). We find therefore, that the Gibbs state~its locally av-
eraged velocity field! is a solution of the shallow water equa
tion, which is steady in a reference frame rotating at a mo
fied angular velocityV1l. This velocity is indirectly
determined by the constraint on angular momentum. N
that the result can be readily extended to the shallow w
system on the sphere.

In the case of an annulus, the circulationC252*uudl
around the inner wall is an additional conserved quantity~the
circulationC1 around the outer wall is also conserved, bu
is related to other conserved quantities, asC15G2C2 , and
the conservation ofG is already included in the PV conse
vation!. Furthermore, we need in general to setc5c2Þ0 at
the inner wall~while we can still setc50 at the outer wall!.
As a consequence, a boundary term2c2dC2 now appears
in the expression~30! for the energy variation. However, w
can directly setdC250, canceling this boundary term, with
out influence on the independent variableshr ~determining
the locally averaged vorticityv̄5*shrds), “•u and h.
Therefore, the only modification with respect to the disk
an additional unknownc2 in the definition~10! of c, deter-
mined by the corresponding additional constraintC2 .

The case of a straight channel can be viewed as the l
of an annulus with a small width, but it can be convenient
treat it in itself. Let us consider a straight channel betwe
two walls at coordinatesy56Ly/2 with periodic boundary
conditions along thex direction~with domain lengthLx). In
the absence of Coriolis force (V50), thex-wise momentum

P5E huxd
2r ~94!

is conserved~instead of the angular momentum!, as well as
the circulation C152*uxdx along the upper wall (y
5Ly/2). The boundary condition~10! definingc is replaced
by c5P/Lx at the upper wally5Ly/2 and c50 ~for in-
stance! at the lower wally52Ly/2. Unlike with angular
momentum, we cannot express the variationdP in terms of
the variations in the independent variablesv̄,“•u,h . How-
ever, we have now an additional freedom in the variatio
problem, as we can add a uniform x-wise velocity2Uex
~use a reference frame with velocityUex) without influence
on the independent variablesv̄,“•u, h. For any choice ofU,
we can solve the variational problem with the velocityu8
5u2Uex , corresponding energyE85E1MU2/22PU, and
upper wall circulationC

1
8 5C12ULx . This yields a Gibbs

state~35!,~38!,~41! representing a steady solution of the sh
low water equation in a reference frame moving with velo
ity Uex . Among these states, the ones with the right value
the momentumP5*huxd

2r will be the actual solutions
Families of Gibbs states with the same structure translate
thex direction are obtained, as discussed by Sommeriaet al.
@18# in the incompressible case.
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Finally, in the case of an infinite domain, the two comp
nents of momentum, as well as the angular momentum
conserved. This yields to purely translating or purely rotat
Gibbs states, as discussed by Chavanis and Sommeria@44# in
the incompressible case.

B. Relaxation equations

Taking the derivative of Eqs.~94! and~92! with respect to
time and using Eqs.~58! and~59!, we obtain the constraints

Ṗ5E hJvyd
2r50, ~95!

L̇52E hJv•rd2r50. ~96!

These constraints can be included in the variational princ
~67! by introducing appropriate Lagrange multipliers d
noted asb(t)U(t) andb(t)l(t). Then, the results of Sec. V
are generalized simply by replacing the velocityū by the
relative velocityū85ū2U(t)ex2l(t)ez3r where the time
evolution of U(t) and l(t) is obtained by substituting the
optimal current~73!, with the above transformation, in con
straints~95! and ~96!. In the case of a channel, we have t
additional conserved quantityC152*uxdx along the upper
wall. Using Eq.~59!, we readily find thatĊ15*Jvydx50
as the currentJv is parallel to the wall, so the circulation
along each wall is indeed conserved by the relaxation eq
tions.

VII. CONCLUSION

We have applied equilibrium statistical mechanics to p
dict the self-organization of the shallow water system,
suming that the velocity divergence as well as the hei
field h remain smooth, while vorticity undergoes filament
tion into fine-scale structures. This regime is expected in
absence of shocks, typically for flows submitted to a stro
Coriolis effect, for which our present approach generaliz
the earlier QG~incompressible! results. We predict an orga
nization into a steady flow, after smoothing of the fine-sc
vorticity fluctuations. It is characterized by a particul
monotonic relationship between PV and the stream func
c, defined by Eq.~12!. It is a balanced motion, reducing t
the geostrophic balance~49! for unidirectional solutions and
to the cyclostrophic balance~57! for axisymmetric ones. In
other words, the wave modew vanishes. In domains with
symmetries by translation or rotation, steadily translating
rotating solutions are obtained~see Sec. VI!. It is remarkable
that these dynamical properties emerge from entropy m
mization. Moreover, the Boltzmann entropy~21! is the only
expression@of the general form~22!# that yields a solution to
the maximization problem, unlike in the Euler case.

The predicted state appears as the most likely resul
random PV reorganization~stirring! taking into account en-
ergy conservation. This provides a general explanation
the emergence of such steady flow structures—jets or
lated vortices—a phenomenon widely observed in natu
2-11
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systems and numerical simulations. Practical predictions
be obtained by solving the system~42! and~43!, reducing to
Eq. ~52! in the unidirectional case. It is, however, more co
venient in general to solve relaxation equations as develo
in Sec. V. It involves modified shallow water equations~58!,
~60!, and ~74! and a relaxation equation~62! with a current
~69! for each PV level. The case of two PV levels is explic
ted with more details in Sec. V C. For the purpose of cal
lating the equilibrium states, the advective terms of th
equations~on the left-hand side! can be dropped out, and th
diffusion coefficientD is arbitrary ~but positive!. The time
evolution relaxes towards a Gibbs state, and it selects a
entropy maximum among the different solutions of Eqs.~42!
and ~43!, which are just critical points of entropy.

These predictions correspond to an ideal property of
mixing with the only constraint of the conservation laws. T
system may not actually reach such equilibrium by free e
lution for various reasons, as discussed in the Introduct
In particular, systems of geophysical interest are permane
forced instead of freely decaying. However, we can still u
the relaxation equations as subgrid-scale models for a
evolution simulation of the explicitly resolved scales. T
idea is that eddy fluxes will tend to drive the system towa
the statistical equilibrium. Then the diffusion coefficient h
to be adjusted to ‘‘realistic’’ values@27#.

This subgrid-scale modeling involves a term of PV ed
diffusion and aforcing or drift term. The latter is reminiscen
of the ‘‘neptune’’ effect—an intriguing forcing effect pro
ru

hy

sk

he
d
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posed by Holloway@32# as a driving of a mean flow by
random geostrophic turbulence in the presence of bot
topography. This was obtained by another statistical mech
ics approach for truncated spectral models of the QG syst
but it can be viewed as a particular limit of the present a
proach@27#. This forcing here naturally appears in assoc
tion with the eddy diffusion of PV, as the result of the ener
conservation constraint in the maximum entropy product
procedure. Note that more direct justification of this term h
been also obtained~in the incompressible Euler case! in
terms of kinetic models by Chavanis@48–50#. In this point
of view, the drift term is a result of a polarization proces
These kinetic models yield more complex expressions of
eddy fluxes, involving integral over previous times, whi
reduce to our MEP expression only close to an equilibri
state. Moreover, as discussed in Refs.@53# and @54#, the as-
sumption of a global energy constraint~65! should be re-
placed with a more local condition in large systems, a
neglecting the energy of subgrid-scale fluctuations is app
priate only when the cutoff is much smaller than the Ross
radius of deformation. However, the fundamental existe
of a drift term, a ‘‘generalized neptune effect’’ in addition t
PV eddy diffusion, is confirmed by all these approaches. T
allows one to incorporate the fruitfull idea of PV uniformiza
tion in operational modeling. The principle of extension
multilayer shallow water systems, such as the mo
MICOM @34# used in oceanography is straightforward.
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