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Statistical mechanics of the shallow water system
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We extend the formalism of statistical mechanics developed for the two-dimen&@)atuler equation to
the case of shallow water system. Relaxation equations towards the maximum entropy state are proposed,
which provide a parametrization of subgrid-scale eddies in 2D compressible turbulence.
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[. INTRODUCTION cid, deformation of the vorticity field creates an intricate fila-
mentation; however, if we introduce a macroscopic level of
Two-dimensional flows at high Reynolds numbers havedescription(a “coarse graining) it can be shown that an
the striking property of organizing spontaneously into large-overwhelming majority of these microscopic configurations
scale coherent vorticég,2]. These vortices are ubiquitous in are close to a macroscopic stétiee statistical equilibrium or
geophysical and astrophysical flows with the well-known ex-Gibbs statg obtained by maximizing a “mixing entropy”
ample of jupiter’s great red spot, a huge vortex persisting fowhile accounting for all the constraints of the Euler equation
more than three centuries in a turbulent shear. They shaighe conservation of energy and of the global probability dis-
some common features with stellar systems, such as, elliptiribution of vorticity level3. The resulting Gibbs state turns
cal or spherical galaxies that form after a phase of “violentout to be a steady solution of the Euler equations with super-
relaxation” [3-5]. They can also have applications in the imposed small-scale fluctuations. Although these fluctuations
process of planet formation, which may have begun insidare eventually smoothed out by viscosity or other small-scale
persistant gaseous vortices born out of the protoplanetargffects(e.g., 3D turbulence in geophysical applicatipriee
nebula[6-9]. Understanding and predicting the structure oforganization is controlled by the inertial stirring process.
these organized states is still a challenging problem. The validity of the prediction, therefore, relies on the as-
Since the dynamics of these systems is highly nonlinear, aumption that the inertial organization occurs faster than the
deterministic description of the flow for late times is impos- change of vorticity levels due to viscositpr other small-
sible and one must take recourse to statistical methods. Ttezale smoothing processvhose effect is enhanced by the
self-organization was firstqualitatively) explained by On- concomitant straining of vorticity structures. Comparisons of
sager{10], using equilibrium statistical mechanics of singu- the predicted Gibbs states with the results of numerical simu-
lar point vortices. Explicit results have been obtained bylations at high Reynolds numbers provide good quantitative
Montgomery [11], Joyce and Montgomery{12], and agreement when stirring is sufficiently rapid to yield equilib-
Lundgren and Pointifl3] using a mean field approximation rium before significant influence of viscous effeft8—20.
for this point vortex system. See R¢14] for a good review In contrast, discrepancies appear when the final organization
of the early statistical approaches of two-dimensiai2ad) occurs after a long evolution timjgl9,21]. Similar conclu-
turbulence. The case of nonsingular vorticity fields has beesions have been drawn by comparing statistical mechanics
later on treated by KuzmifiL5], Miller [16], and Robert and predictions with laboratory experimenig2]. The theory is
Sommerig 17]. The resulting equilibrium states are qualita- particularly useful to interpret electron plasma experiments
tively similar to the mean field resulfd1-13 of the point  [23], whose dynamics is well described by the 2D Euler
vortex statistics, but there are quantitative differences. Te@equation(with no viscosity in the standard sensklodifica-
apply this theory, the initial vorticity probability distribution tions of the theory have been proposed in attempts to keep
has to be discretized in vorticity levels, and each of the corenly the conservation laws that are the most robust in the
responding vorticity patches is supposed to mix in the finapresence of weak viscous effed®4]. Note that although
self-organized state. We shall, therefore, call this approacthese different statistical mechanics approaches bear quanti-
the vortex patch statistical mechanics, although it applies teative differences, they share an essential common property:
any continuous initial vorticity field: there is a well-defined they all predict a self-organization into a steady state with a
limit as the discretization in vorticity levels is refined. This is monotonic relationship between vorticity and stream func-
unlike a discretization in terms of singular point vortices, tion.
whose statistical equilibrium depends on an arbitrary distri- For applications to atmospheric or oceanic motion, the
bution of point vortex strengths. Coriolis force and density stratification have to be taken into
While the point vortices form aN-body hamiltonian sys- account. A first step in that direction is provided by the
tem, with firmly rooted statistical mechanics, the justificationquasigeostrophic model. The application of the vortex patch
of the vortex patch statistical mechanics is more elusivestatistical mechanics to this case is formally straightforward
Nevertheless it has the advantage of providing a systematigs the flow is still assumed to be nondivergent, and the vor-
framework to tackle self-organization in 2D flows, with well- ticity is just replaced by a potential vorticif25—-28§. In the
defined predictions. At a microscopic level, complex, invis-presence of planetary curvature or topografbsta effec,
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the point vortices are no more solutions of the system, but 3g 4
another approach, using a truncated spectral m@#tlhad 225: - : _. - e, - = 3'5
been previously applief30,31]. It provides a rationale for 1.55—..- - - = { .-.“’—:' 2
understanding the eddy generation of mean currents over th ;'_'- - - - - - =" S
sloping margins of the oceaf32]. The resulting mean flow '005 s : : . - - %s

is recovered as a particular limit of the vortex patch equilib-
rium stateq27]. )

The quasigeostrophic model is, however, of limited appli- 22
cability: the shallow water system, dynamically equivalent to _ 2f
a compressible 2D flow, provides a more accurate and gen &

[T (L] LEAR] LU
ST AT
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eral description of geophysical flo83]. It can be directly ~ 0.5 , . . , , , _3655
generalized into multilayer models used as operational pre- 0 2 4 6 8 10 12 |
dicting tools for oceanograpHh4]. Several numerical com-

putations, for instance Refg35—37, indicate inertial orga- 2';‘; s
nization of vortical motion into coherent vortices, such as “5E 3
with the incompressible Euler equations. However, none of1:5¢ - g

the statistical mechanics approaches have been previouslu_gé é.s
extendec_j to _the_sha_llow waFer system. We propose here a o; 5 a . s 10 12 -0.5
attempt in this direction, stating the formalism for the gener-

alization of the vortex patch statistical mechanics. FIG. 1. Relaxation towards statistical equilibrium in a QG

This statistical mechanics is closely related to the concepnodel of the great red spéirom Ref.[40]) . Three successive PV
of potential vorticity (PV) mixing, widely used to interpret fields are represented as gray levels. The initial condittop) is
oceanic or atmospheric data: for instance, the circulation angfade of small PV patches. These patches organize into vortices
isotherm shape in Atlantic gyres can be predicted by an admiddle) that eventually merge into a single orfleottom. This
sumption of uniform P\[38]. The idea of PV uniformization sequence is obtained by the QG version of the relaxation equations

has b d also to int t feat f at heric wi eneralized to shallow water in Sec. V: entropy increases with time
as been used also fo Interpret Ieatures ot atmospheric Wingg.; o energy is exactly conserved. At equilibrium, the vortex is an

in jupiter’s atmospherg39). However, PV mixing is neces- 44| spot of quasiuniform PV surrounded by strong gradients, cor-
sarily limited to some regions, in particular, due to the con-responding to an annular jet.

straints on energy conservation. The statistical mechanics
quantifies this idea by predicting the most mixed state conpy eddy transport. Finally the case of particular domain ge-
sistent with energy conservation. In a shallow water rotatingpmetries is discussed in Sec. VI.
system, it yields zones of uniform PV separated by intense
jets(scaling as the Rossby radius of deformalidrhis struc-
ture is illustrated in Fig. 1taken from Bouchet and Dumont
[40]) showing a model of the great red spot of jupiter. The Consider a fluid layer with thickness(x,y,t) submitted
present paper provides the formalism to extend such quasie a gravity acceleratiog on a rotating planet. We assume
geostrophic calculations to the more realistic shallow watethat the layer is thin with respect to the characteristic length
model. scale of the horizontal motion. In that case, the velocity field
The properties of the shallow water system are first reu(x,y,t) can be assumed two dimensional and the vorticity
called in Sec. Il stressing the conservation laws, the backe=we,=V Xu is directed along the vertical axis. We shall
bone of the statistical mechanics approach. In Sec. Il theassume for simplicity a plane geometry, with rotation vector
procedure of Robert and Sommefit7] is extended to the € directed along the vertical, but extension to a sphere
shallow water system with discussion of simplified cases invould be straigthforwardwe introduce the Coriolis effect
Sec. IV. We still assume that the vorticity field creates intri-but no centrifugal force as the latter is incorporated in the
cate filamentation but the divergence and water hefgimt-  gravity of the planet The time evolution of these quantities
face density fields are still smooth. These assumptions areis determined by the shallow water equati¢88]
justified for flows dominated by vortical motion at moderate
Mach numbers, for which the generation of shocks is not
effective. This is the case in most cases of atmospheric or 5 V- (hu)=0, (1)
oceanic dynamics.
The relaxation toward equilibrium is discussed in Sec. V
providing methods for determining the statistical equilib- ‘9_“+(w+29)><u:_v5 )
rium. It can be used also as a subgrid-scale modeling for at '
shallow water turbulence, and this is probably the main prac-
tical application of such statistical mechanics approacheslere, the usual advective term Vu has been expressed
[27,32: indeed most cases of interest correspond to forcedising the well-known identity of vector analysis-Vu
systems, which never really reach a statistical equilibrium=V(u?/2)+ wxu, and the termu?/2 incorporated in the
but should be permanently driven toward such equilibriumBernouilli function

Il. THE SHALLOW WATER EQUATIONS
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u? The conditions at the domain bounddwyith normal coordi-
B=gh+ >, (3)  nate?) are the consequences of the wall impermeability. We
here consider a domain with a singtite) boundary, so we

together with the pressure tergh. Note that the shallow Can takey=0 at this boundaryas ¢ is defined within an
water system can be viewed as a 2D flow of a compressiblarbitrary gauge constant .
gas with densityh and equation of statp=gh?/2 (p is the For a steady solution, the mass conservatibnreduces
vertically integrated pressureand our results could be t0 V-(hu)=0, so thate=0 and
readily generalized to 2D compressible adiabatic flows. We
shall often refer to the shallow water system as the “com- hu=—eXxVy (steady. (12)
pressible case,” by opposition with the “incompressible”
case, for which Eq(l) is replaced by -u=0.

One can easily check that the PV

Equation(5) then reduces ta- Vg=0, which implies thafj
is a functionF of the stream functions

q=F(y). (13

B w+2Q 4
9= “ Finally, Eq.(2) reduces to
is conserved for each fluid parcel, i.e., (w+2Q)Xu=—-VB. (19
dg dq Taking the dot product withu, we obtainu-VB=0 or,
dt ot +u-Vg=0. (5) equivalentlyB=B(#). This is known as the Bernouilli theo-

rem. Substituting Eq(12) in Eq. (14), we obtain a specific
Each mass elemeitd®r is conserved during the course of relationship between the potential vorticityand the Ber-
the evolution. Together with E@5), this implies the conser- nouilli function B in the form
vation of the Casimir invariants 4B
q=- 7. (15
cfzf f(q)hd?r, (6) dy
Small perturbations to a state of rest, with uniform thick-
wheref is any continuous function of the potential vorticity. nessH, satisfy linearized equations with two branches of
In particular, the moment¥', of the potential vorticity are solutions. For small scales, these are the usual surface waves
conserved on one hand, with purely divergent velocity and propagation
speedc=(gH)?, and steady vortical divergenceless modes
I :J' " her 7) on the other_ hand. I_n no_nlinear regimes,_ these two modes
n ' interact. Vortical motion with scaleand typical vorticityw
fluctuates on time scake %, so it emits waves at wavelength
The moment:n=0,1,2 are, respectively, the total mads )\ ~c/w. Hence)/l is the inverse of the Mach numbefu

the circulationl’, and the PV enstroph¥/,. The energy based on the local velocity~ wl. Therefore, we expect that
) 1 for our considered case of small Mach numbers, velocity
E:f hu—d2r+ _f gh?d?r ®) divergence and free surface deformation are much smoother
2 2 ’ than the vorticity field(their wavelength is much larger

|nvolv.|ng a k|ne_t|c and a potential p_art, is also a conseryed lIl. THE EQUILIBRIUM STATISTICAL MECHANICS
guantity. Note finally that for a multiply connected domain,

e.g., the annulus or the channel discussed in Sec. VI, the A. General principles and notations
;II’CU|atI0n along each boundary is conserved, in addition to For slow velocities, the shallow water system reduces to
' the quasigeostrophi®@G) equations, witth=cte, such that

It wil b_e_ convenient in the sequel to use a HeI_mhoItz Eqg. (1) reduces to the incompressibility conditidh- u=0.
decomposmon_of the momentul into a purely rotational Then the velocity field remains regular for any time, but it
and a purely divergent part generally develops complex fine-scale vorticity filaments so

hu=—exVy+Veo, o) tha@ a d_etermir}istic descriptior) of the .flow wo_uld require a
rapidly increasing amount of information as time goes on.
The idea of the statistical theory is to give up suctieder-
ministic description and refer to probabilistic description.
Therefore, the exact knowledge of the “fine-grained,” or mi-
Ay=-Vx(hu), ¢=const on each boundary, croscopic potential vorticity field is replaced by the probabil-
(10 ity density (area fractioh p(r,o) of finding the potential
vorticity level o at positionr. We extend here the same
Ap=—-V-(hu), d¢/d{=0 on each boundary. definition to the shallow water case. The normalization con-
(11 dition yields at each point

wherey and ¢ are defined as solutions of the Poisson equa
tions
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and they are conserved during an inviscid evolution. By con-
f p(r,o)do=1. (160 trast, the macroscopic moments of potential vortidi§®
= [q"hd?r are not conserved fom=2, as they are partly
The locally averaged field of potential vorticity is expressedtransferred into fine-grained fluctuationE 5= [gq?hd?r is

in terms of the probability density in the form the coarse-grained potential enstrophy
The mixing entropy

q= ,o)odo. 1
q fp(r o)oda 17 S=—fp(r,a')lnp(r,(r)h(r)dzrd(r, 21)

The statistical equilibrium will correspond to the probability

field p(r,o) that maximizes a mixing entropy with the inte- Measures the number of microscopic configurations associ-

gral constraints brought by the conserved quantities. ated with the same macroscopic field of potential vorticity.

In the incompressible case, the velocity field is supposed "€ dependence in is the same as for the incompressible

smooth, as it is obtained from the vorticity field by a spatial€@S€[17], and the factoih(r) is introduced to ensure that
integration process, and the integration over the local fluc€NtroPY is conserved by mere macroscopic displacement of

- . 2 .
tuations yieldsy (see Ref[17] for a precise justification By [)de parcels. Indeed, the mass elemb(it)d*r is conserved

contrast the inviscid shallow water dynamics generally Iead%jgr in the incompressible case. At equilibrium, the system is

to smgulanﬂes(shocks), W'.th as_souat_ed_ energy dissipation expected to be in the most probalfie., most mixed state
even in the absence of viscosity. This is a source of funda:

: e R consistent with the constraints of the Euler equation. The
mental mathematical difficulty for the generalization of the . , X
S o o entropy(21) has been justified by rigorous mathematical ar-
equilibrium statistical mechanics initially developed for the

Euler equations or QG system. Nevertheless, for the case gpments(in the incompressible caséut other forms have
4 y ' ) ’ een recently proposd@0]. Therefore, we shall consider a
small Mach numbers that we consider, shocks occur onl

) . ; )éeneral form of entropy

after a very long timé&due to nonlinear steepening of surface
waves, and they involve a weak energy dissipation, since
most of the energy remains in the vortical motion. Further- S=f s(p(r,o))h(r)d?rdo, (22
more, fine-scale vorticity fluctuations behave in the same
way as they do in the QG system, and only interact Withy,g fing that Eq(21) is the only expression leading to an
surface waves and flow divergence at much larger scale, %Sntropy extremum.
discussed above. In conclusion, we shall assume that vortic-
ity fluctuates at small scale but we assume that velocity is
smooth as well as its divergence and the helght

A macroscopic state is then defined by its probability field According to the previous discussion, the most probable
p(r,o), its height fieldh(r), and its flow divergencéboth  macroscopic state is obtained by maximizing the entropy
assumed without microscopic fluctuationsThe velocity  (22) with fixed energy(8), global vorticity distribution(18),
field u(r) can be deduced by integration from its divergenceand local normalizatioril6). This problem is treated by in-
and vorticity o= gh— 29 [using a Helmholz decomposition troducing Lagrange multipliers, so that the first variations
for u analogous to Eqs9)—(11)]. The energy(8) depends ~ Satisfy
only on this smooth field, with negligible influence of local
fluctuations, as in the incompressible cf%@]. The conser- 53_,355_f a(o)dy(o)do
vation of the Casimir invarian{6) is equivalent to the con-

y fluid particle displacement instead of the surface element

B. First order variations

servation of the global distribution of potential vorticitye.,
the total area of each level of potential vorticity weighted by —f g(r)&( f p(f,a)d(r) hd?r=0. (23
h)
The Lagrange multipliers are, respectively, the “inverse tem-
yo)= f p(r,o)h(r)d?r. (18) perature”s, the “chemical potential’a(o) of PV speciesr,
’ and (r).

) . . o ) We shall takenh(r), p(r,o)h(r), andV -u(r) as indepen-
The microscopic moments of potential vorticity can be writ- gent variables characterizing the macroscopic state. Then, it
ten is easy to establish, by differentiating, respectively, Egs.
(22), (18), and(16), that

Fn:f v(o)o"do= q”h(r)dzr, (19
5= [ [=05'(p)+s(p) oncPrdo+ [ (ot ph)Pr o,
where (24
q”=f p(r,o)c"do, (20 5y(0)=J 8(ph)d?r, (25
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fp(r,a)da)=f 5(ph)da—fp5hdo. (26)
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C. The Gibbs states

Substituting explicitlys(p) = —p Inp in Eq. (31), the op-
timal probability density can be expressed as

The variations of energy are conveniently expressed in terms

of the Bernouilli functionB as

5E:f Bahd2r+f hu- sud?r. (27

Then, using the Helmholtz decompositi¢®) for the mo-
mentumhu, the second integral can be rewritten

J hu-éud2r=—f(waéu)-ezderrJVgo-&udzr.
(28)

Integrating by parts with the identitiesV X (¥ du)
=y VXou+ViyxXdu and V- (pdu)=¢V-(6u)+Ve-du,
and using the boundary conditions f@¢rand ¢ , we obtain

f hu-audzrzf wﬁdzr—f V- (su)d?r. (29
Using EQs.(16), (4), and(17), we have finally

5E=f Bp5hd2rd0'+f Yo d(ph)d?rdo

—f ©8(V -u)d?r. (30)

The variation(23) vanishes for any small changes of the
variables only if the coefficient of each independent variable

vanishes
d(ph) if s'(p)=Boy+ala)+{(r), (31
oh if —s’(p)+%f))=,88—§(r), (32
o(V-u) if ¢=0. (33

Note that the right-hand side of E@?2) is independent of-.

This implies that the term on the left-hand side must be
constant(that we can take equal to 1 without loss of gener-

ality): —s'(p)+s(p)/p=1. This equation is easily inte-
grated ins(p)=Ap—pInp whereA is an integration con-
stant. When substituted in Eq22), using Eq.(19), this
yields

S=—fp(r,()')lnp(l’,o’)h(r)dzl’da'-i-ANl, (34

P(f,tf):ig(a)e_ﬁg‘”, (39

Z(y)

whereZ(y)=e‘M*1 andg(c)=e" *(?). The normalization
condition(16) leads to a value of the partition functiaghof
the form

ZZJ’ g(o)e A%da, (36

and the locally averaged potential vorticity/7) is expressed
as a function ofy according to

f g(o)oe Prdo

q= =F(y). (37
f g(o)e P o
This expression can be rewritten
— 1dinZ 39
B dy’

which is the same functional relation as in the case of 2D
incompressible Euler flow§l7] or quasigeostrophic equa-
tions.

Differentiating Eq.(37) with respect to), we check that
the variance of the potential vorticity can be written

— 1
0=0"—q"=— 5F'(¥), (39
or, alternatively{see Eq(38)]
1 d?Inz
Q2:E a7 (40)

Therefore, the slope of the functian=F(y) is directly re-

Jated to the variance of the vorticity distribution. A similar

result[41] links the successive moments to the successive
higher order derivatives oF. Relation (39) has the same
form and origin as the “fluctuation-dissipation” theorem in
statistical field theory, wherdg/d is interpreted as a sus-
ceptibility [42]. Since g,>0, we find that the functiorg
=F(4) is monotonic; it is decreasing f@>0 and increas-
ing for B<0 (it is constant for8=0). Another proof of this
result is given in Ref{17].

Substituting explicitly —s’(p) +s(p)/p=1 in Eq. (32),

which is just the entropy21) up to an additive constant term we have

AM (which we can take equal to zero without loss of gener-

ality). Therefore, the entrop§21) is the only functional of 1

the form (22) for which the maximization problem has a B:Em Z
solution. This result is astounding because it is obtained

without any explicit reference to thermodynamical argu-This relation shows that the Bernouilli function plays the role
ments. of a free energy in the statistical theory. We note that [&th

(41)
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and g are functions ofy, while ¢=0 from Eq.(33), asit gq=p,01+(1—p1)og, or reverselyp,=(q—og)/(o1—00).

should for steady flows. Furthermore, taking the derivativeThen, g(o) is the sum of two Dirac function termgy(o)

of Eq. (41) with respect to) and using Eq(38), we check  =go8(0—0¢) +9:16(c—01), so the expressior36) be-

that the relatiory= — dB/d¢ required for a steady solution comes Z=goexp(—pBooy))+giexp(=poyy). The corre-

of the shallow water equation is satisfied. Therefore, the flovsponding expressio(87) for q reduces to

selected by our purely statistical procedure is preserved by

the flow evolution, so the statistical theory is indeed consis- — 01709

tent with the dynamics. 4= oot 1+NexpB(oi—og) ¢’
In order to get an explicit prediction of the self-organized

state for any given initial condition, the Eq&1) andq  This relation corresponds to the Fermi-Dirac statistics. The

— —dB/dy must be solved. Using=(w+20Q)/h, with WO Unknown parameters=go/g, and are indirectly de-

— _Vx(e,xVyih), and the definition(3) of B, these two termined by the conserved quantities. The associated Ber-

equations can be written as two coupled partial dif'ferentiaf1OUIIII function (41) becomes
equations fory andh

(44)

1 1
B=—Ing;—ogip+ —In{\ +efloom oDV}, (45)

Ay 20 1 dB B B

=t =5 VyVh=——, (42
h h h dys The problem is also greatly simplified in the alternative
case for whichg(o) is a Gaussian
(V¢)2+ h=B() (43 2

on? O | g(0)=goel ~( o) V2 (46)

The function B(#)= (1/8) InZ(y) depends on the in- Then, the local probabili_ty distributi_o(_BS) is_also a Gauss-
verse temperaturg and the functiorg(o), and these quan- 1an, and the corresponding Bernouilli functiéfi) is
tities are implicitly defined by the integral constraints on 1 1
energy (8) and global PV probability distribution(18), _ - U2, = 2_
Y(0) = [[9(a)/Z(#)]e Po"h(r)d2r. This problem has sev- B=5nl9o(2mo) ]+ 5 02BY oy (47)
eral solutions in generdthis is already the case for 2D in-
compressible flows, see Refd3,44)), but most of them are corresponding to a linear relationship
not true entropy maxima: the first variatiof®@3) are can- _
celed but the sign of the second variations should be g=—Borp+o, . (48
checked. A good method to select the entropy maxima is to
use a relaxation process that, starting from the initial condiAccording to Eq.(39) the variance of the potential vorticity
tion, increases entropy while keeping constant the integrab then uniform, with valueg,= o, (more generally, all the
constraints. In the incompressible case, such a process hagen moments of the Gaussian are related otp by

been per_formed by a continl_Jous time _relaxatio_n equa’tiorQq_a)an(2n—1)!!(7'21 and the odd moments cancel put
[45], or directly by a discrete time relaxation algorit#6]. This Gaussian local probability distribution is obtained by
We shall extend the continuous time relgxanon to the .Sha|rnaximizing the entropy21), reducing the constraints of the
low _vvater system in Sec. V, but we first discuss some S'mpl‘alobal distributiony(o) to its first momentd’ =M, T'; and
particular cases. I',. This will be the true Gibbs state for a particular initial
distribution y(o) with higher order moments equal to the
IV. PROPERTIES OF THE GIBBS STATES global moments of this simplified Gibbs state. A linear rela-

IN SOME PARTICULAR CASES tionship betweery and ¢ can also be obtained for any dis-

tribution (o) in the limit of strong mixing whereBo s

_ ) <1, so that Eq(37) can be linearized, as discussed by Cha-
The Gibbs states are characterized by the relat®  yanis and Sommerig3]. In both cases, the result is equiva-

betweenq and ¢, which is always monotonic, as shown in lent to the state of minimunfcoarse-grainedpotential en-

the preceding section. For numerical calculations of thestrophyI'$? with the constraints of givek, M, andT .

Gibbs state, we need to discretize the PV levels, replacing

the integrals over PV levels by sums. Calculations in the

incompressible casgl9,20,27 indicate that the result al-

ready converges with a few PV levels. Keeping only two We consider here unidirectio_nal solutions such that

levels, q=0g and g=o74, it is convenient to simplify the =u(y)e,. The equilibrium relatioq= —dB/d¢ then yields,

discussion and is often representative of more general casesultiplying each member biru=d¢/dy and using the ex-

Then, the probability distributiop just depends on a single pressiong3) and(4),

probability p; of finding the levelo; (for instance, with the

probability 1—p,; of finding the complementary levet. @+&d_¢_o

This probabilityp, is directly related to the PV average by gdy h dy

A. Particular a—zp relationships

B. Unidirectional solutions

(49

026302-6



STATISTICAL MECHANICS OF THE SHALLOW WATER SYSTEM

PHYSICAL REVIEW B5 026302

This condition of geostrophic balance can be readily inteqsymptotic behaviow~exp(— V1+4\¢) as é— + (this

grated in

40
h®+ — y=H?, (50)
g

whereH is an integration constant. Therefore, the heigig
a decreasing function af.

A second relation is provided by the expressid3) of
the Bernouilli function. It is convenient to scale thiecoor-
dinate by the Rossby radius of deformation, writiyg

JgH

Lr="q " (51)

Then, Eq.(43) yields a first order ordinary differential equa-
tion for h,

dh)z_ _
dz) ~HIB(h/g=h]=U(h). (52)

2
The Gibbs state expressiofhl) of B(i/) can be expressed as

a functionB(h) of h using Eq.(50). Note that the solution
must be viewed generally in gwise translating frame of

reference, as discussed in Sec. VI, where the additional con-

servation law for momentum is included.

Equation(52) directly generalizes the QG equation dis-
cussed in Ref.28]. Free jet solutions, separating two regions

of uniform heighth=h_.,, are possible, provided that the
function U(h) defined in Eq.(52) vanishes forh=h., as
well as its derivative) ' (h). This is a good representation for

the annular jet structure of the great red spot or the intens
eastward jet in jupiter’s northern hemisphere. Such a free j
solution is possible, for instance, in the two PV level cas

(45), with appropriate relationship between the Lagrange

uniform regiong 28,47).

Boundary currents, for instance in the half spdceé,

(with any origin &), are also typical solutions of E@52).
We shall take, by conventiogy— 0 asé— +. Then,U(h)
and its derivativeU’(h) must vanish for the asymptotic
heighth=H, reached at large distanéd see Eq.(50)]. For
—0, the Gibbs functiong(¢) can be linearized to first
order in. Then, due to the relatiog=—dB/dy, B(y) is
quadratic ing, and using Eq(50), we haveU (h) of the form
U(h)=H?[(\/2)(h/H)*—Db(h/H)?—(h/H)+c], where \
— (LEH%4)(da/d4) (o). According to Eq.(39), X has
the same sign as the inverse temperajBird he conditions
U(H)=U'(H)=0 imply the relationshipdo=X\—1/2 and
c=(1+\)/2 between the coefficients. Then, Ef2) can be
written in the form

de)\? _
(—) =(1-¢)?(1+\(1+ ¢)?), with ¢=h/H,

dé
(53

in this case of a linearized functiog(). Writing ¢=1
+ 6 and expanding Eq53) to lowest order ing, we find the

S

imposesA = — 1/4). Returning to the original variables, we
find that the boundary current extends on a typical length
~Lg/J1+4N. If B>0, this length is smaller than the
Rossby radius and <0, it is larger.

In the case of a linear relationship betwegand «, Eq.
(593 is valid in the whole spacé>&,. We have found par-
ticular analytical solutions that are representative of the gen-

eral behavior for any.. ForA=0 (i.e., =0 or g=const),
we find

p=1—e"¢. (54)
Forax>1 (i.e., B large, we find
p=tanh(\¢), (55

for an appropriate origin of such that the reduced thickness
¢ remains positive. We can check explicitly on these ex-
amples thatv= ¢— 1 is attenuated exponentially on a typical
length 1A/1+4\N. For A= —1/4, the decay length diverges
and we have a power law behavior

_(6+\3)?-3
(H 3P

leading to8~ — 4/£? asé— +. This £ 2 behavior is valid
for any Bernouilli function when\ = —1/4.

These solutions describe boundary jets. We can show that
there are no jet solutions separating two domains with uni-
form PV for a linearq— ¢ relationship, unlike in the more
general case, for instance with two PV levels. A similar con-
(Elusion was already reached in the QG cf®8]. For the

bove boundary jet solutionisincreases with distance to the

(56)

a
paepoundary, such that the pressure gradient balances a Coriolis
rameters characterizing a phase equilibrium between the tWf

rce directed away from the boundary. Another possibility,
or a boundary current in the opposite direction, is a confined
solution with h reaching the value zero at a finite wall dis-
tance. The absolute vorticity(2—du/dy must vanish at this
position to ensure finiteness of the PV({2-du/dy)/h. The
free surface slope remains finite, as well as the velagjty
and both are related by the geostrophic baladdg#dy
=—2Qu. Such finite support solutions do not exist in the
QG case. Note finally that all the solutions discussed here
cancel the first variations of entrog3) but they are not
necessarily entropynaxima This has to be checked, for in-
stance, by the relaxation equations discussed in Sec. V.

C. Axisymmetric solutions

For axisymmetric solutiongj=u,(r)e, (where ,0) are
polar coordinatgsandhu,= —dy/dr. Then, Eq.(49) is re-
placed by the cyclostrophic balance

2
dh 1 (dt// .l

dr’ (57

9r Thrldr)

Whenhuy,=—dy/dr=0 (cyclone, h is an increasing func-
tion of r, so the vortex core is a trough. In the opposite case
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u,=<0 (anticyclone, the vortex core is a bump in geostrophic
regimes. However, for large velocitieRossby number
larger than unity, the termuﬁ/r dominates, leading always

to a trough. _ _ _ This equation can be viewed as a local conservation law for
Combining this relatiort57) with the expressio(43), one . the circulationl“=fahd2r. We shall determine the unknown

gets a couple of first order ordinary differential equations 'ncurrenth by the thermodynamic principle of maximum en-

the variables) andh. As in the unidirectional case, the so- ;
i : N r r ion(MEP) [45]. For th r we n
lution depends on two constants of integration and thet opy_ production( ) [45]. For that purpose, we need to

Lagrange parameters, which are for examgle, 3, and\ in consider not only Fhe Iopall_y ayeraged PV fiaid but a_lso
the case with two PV levels. This solution must be viewed inth€ Whole  probability distributiorp(r,o.t) now evolving
general in a rotating frame of reference, due to the additiona‘{"Ith timet. The czonservatlon .Of the; global vorticity distribu-
conservation of angular momentum, as discussed in Sec. VA" (o) =Jphd"r can be written in the local form

%(ha)JrV(hq—u):—de. (61)

d _
V. RELAXATION EQUATIONS 51 (Np)+ V- (hpu)=—V-J, (62)
A. The maximum entro roduction principle . . .
] PyP ) princip “whereJ(r,o,t) is the(unknown current associated with the
Relaxation methods are convenient to compute the statigevel o of potential vorticity. Integrating Eq62) over all the

tical equilibrium resulting from any initial condition. The py |evelso, using Eq.(16), and comparing with Eq(58),
aim is to increase entropy in successive steps while keepinge find the constraint

constant all the conserved quantities. Turkington and

Whitaker[46] have implemented a relaxation method to cal-

culate the Gibbs states obtained with the Euler equations. J J(r,o,t)do=0. (63
Robert and Sommerifd5] had previously proposed relax-

ation equations in the form of a parametrization of subgrid-{multiplying Eq. (62) by o, integrating over all the PV levels,

scale eddies that drives the system toward statistical equilih;sing Eq.(17), and comparing with Eq(61), we get
rium by a continuous time evolution. Such relaxation

equations can be used both as a realistic coarse resolution

model of the turbulent evolution, and as a method of deter- J J(r,o,t)odo=],. (64)
mination of the statistical equilibrium resulting from this

evolution(see Ref[5] for a short review. We here general- We can express the time variation of ene@;ﬁdE/dt in

ize this approach to the shallow water system. terms ofJ, using Eqgs.(8) and (59), leading to the energy
We first decompose the vorticity and velocityu into a  ~gnservation constraint

mean and fluctuating part, namely=w+w, u=u+u,

keepingh smooth. Taking the local average of the shallow . —

water equationgl) and(2), we get E= | Johu,drdo=0, (65
@JFV,(hU):o (58) whereizezxﬁ Using Egs.(21) and (62), we similarly
at '

express the rate of entropy production as

o _
— H(@+2Q)xu=-VB-gxJ,, (59

S= —f J-V(Inp)d?rdo. (66)

The MEP principle consists in choosing the currérnhat

U2 maximizes the rate of entropy producti@respecting the
5 (60) constraintsE=0, Eq. (63) and [(J%/2p)do=<C(r,t). The

last constraint expresses a boundknown on the value of

the diffusion current. Convexity arguments justify that this
where the currend,,= U represents the correlations of the bound is always reached so that the inequality can be re-
fine-grained fluctuations. Although we have neglected theplaced by an equality. The corresponding condition on first
fluctuation energy? in front of u? (as well as fluctuations of variations can be written at each tirhe

h), we keep the correlation,=®U , which represent the
PV transport by subgrid-scale eddies. This assumption is jus- 5S— Ig(t)gE_f g(r,t)g( f Jdo-)dzr
tified since, denoting by the typical scale of vorticity fluc-
Zw?

§=gh+

tuations, we havai’~ e and U~ ew?>10? (while @
~w).

We deduce an equation for the evolution of the potential
vorticity (4), taking the curl of Eq(59) and using Eq(58) and leads to a current of the form

_ J?
—f D 1(r,t)5(f5da)d2r=o, (67)
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J=—D(r.t)[Vp+B(t)ophu, —&r.t)pl. Gg)  Probability distributionp, and we need to keep track of it by
(rOLVp+ A ophu, —Lr.bp] 8 solving the probability transport equatigd?) in addition to
The Lagrange multiplie(r,t) is determined by the con- the modified shallow water systef8) and(74). This set of

straint(63), which leads to equations increases the entrofgt an optimal ratewhile
o preserving all the conservation laws of the initial inviscid
J=—D(r,t)[Vp+B(t)p(c—q)hu,]. (69)  shallow water system. We now check that the steady solu-

_ _ o _ _ _ tions reached by these relaxation equations are indeed the
This optimal current is similar to the one obtained in ordi- Gipbs states.
nary incompressible 2D turbulence except that the tean
now replacesV . The impermeability condition imposes B. Relaxation towards statistical equilibrium
that the normal component of the velocity and of the current

vanishes at the wall. We, therefore, have the boundary con- The entropy productiof66) can be written

ditions _ J _
_ S=- f —[Vp+Bp(oc—q)hu, Jd*rdo
n-u=0 (on each boundajy (70) P
n-Vp=—B(t)p(c—q)hn-u, (on each boundajy +,3f J(o—q)hu, d*rdo. (75
(71)

Using Egs.(63) and(65), the second integral is seen to can-

wheren is a unit vector normal to the wall. cel out. Substituting Eq69) in the first integral, we find

The diffusion coefficienD is not determined by the MEP
as it depends on the unknown bou@an the current. It can . J2
be determined by more systematic procedures inspired from S= f D—dzrda, (76)
kinetic theories of plasma physics and stellar dynamics as in p
Refs.[4,48-5(Q for the Euler equations. In that context, the \yhich is positive provided thab=0. A stationary solution
diffusion coefficient is equal to the variance of the velocity 5=0 is such thad=0 yielding, together with Eq(9)
fluctuations multiplied by a correlation time scale. The vari-~" =0y 9. 109 =),
ance of the velocity fluctuations can, in turn, be expressed in  So._
terms of the vorticity distribution by using the Biot and Sa- Vinp)+plo—q)Vy=0. 77
vart formula. The precise form of the diffusion coefficient is g, any reference PV levet
important in order to take into account kinetic confinement o
and incomplete relaxatiofb1]. However, for the purpose of V(In o)+ — V=0 78
reaching the Gibbs state, the diffusion coefficient can simply (Inpo) +Aloo=q)Vy=0. 79

ertheless be positive so as to ensure entropy increase.  _;\wy=0, which is immediately integrated into
The conservation of energp5) at any time determines

the evolution of the Lagrange multipligd(t) according to

it writes

1
e P(r,U)ng(U)efﬁ”w, (79
f DVghu, d?r

(72 Where Z Y (r)=po(r)efro") and g(o)=er, A(o) is a
constant of integration. Therefore, entropy increases until the

B(t)=—
2 =2\ (i \2A42
J D(a )(hu,) dr Gibbs state(35) is reached, With@zlimtﬁw B(t). Further-

We can now provide an explicit form for the vorticity more,lwtg canf?EO\ACha}vanl_s, n prer;_alratlc_)m?at aistattlogl- it
currentJ,, and introduce it back in the shallow water equa—ary solution ot Inese relaxation equations IS inearly stableit,

. : : and only if, it is an entropymaximum Therefore, this nu-
tion (59). Indeed, using Eq<69) and(17), we find merical algorithm selects the maxinte@nd not the minima or

_ — I e the saddle poinjsamong all critical points of entropy. When
Jo==DIVa+A)(a—g)hu.]. (73 several entropy maxima subsist for the same values of the
Substituting Eq(73) in Eq. (59), we obtain constraints, the choice of equilibrium depends on a compli-
cated notion of “basin of attraction” and not simply whether
au . o . _ o the solution is a local or a global entropy maximum. Similar
- T(@+2Q)Xu=-VB+D[e,X Vaq-B(t)(g2—g%)hu]. results are obtained for a simple model of gravitational dy-
(74) namics[52].

SinceB(t)=<0 in relevant situations, the last term in E@4) C. Simplified cases

represents dorcing proportional toi_that_ compensates the In the case of two PV levels, and o4, the transport
diffusion caused by the terre,X Vg~ Au. This additional  equation(62) for the probabilityp, is equivalent to the trans-
term depends on the local PV variange- G2, related to the  port equation forq [since q= oo+ p,(o,—0p)], Which is
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already obtained from the gurl of the_ shallow water equation Au= B wzu_ (89)
(74). Therefore, the relaxation equations reduce to the modi-
fied shallow water system which can be deduced directly from the Gibbs state. Indeed,
sh for a statlonary solutiom = F(y), the previous |dent|t3Au
m +V-(hu)=0, (80) =e,XVw becomesiu=—F’'(y)u that is equivalent to Eq.
(88) for a Gibbs state thanks to E(9).

2 We now account for a small deformation of the fluid layer

a—u+ahez>< u=— —+gh) +D[e,x va_lg(t)qzhu], but assume that the elevation with respect to the average
at 2 61 thicknessH is weak, so that
h=H(1+ with 7<<1. 89
L (Vxu)-e+20 B B (1+m) 7 (89)
9=—"5 d2=(q—00)(o1=d), (82  Tq the first order, the flow is incompressible and E).
reduces tdv -u=0, or equivalentlyu= —¢e,X V¢ [there is a
—, factor H with the previous definitior{9)]. In the quasigeo-
f Dhu, Vadr strophic limit of small Rossby numbets<(), the momen-
Bt)y=——————, (83 tum equation(2) reduces at zero order to the geostrophic
f Dq,u? h?d?r balance
_ gH gH?
n-vqg=—pB(t)ghn-u, (on each boundajy (84) Uu=5q&xVn or y=-55-7. (90
n-u=0 (on each boundajy (85  The expression for the potential vorticity then reduces to
where we ha_ve omitted the overbar vnand the expression W
(82 of q,=g?—q? is easily obtained for a probability dis- {SHQ-20=o0+ L2’ (9D

tribution with two valuesoy and ;. The numerical imple- R

mentation of this system will lead to the two PV level Gibbs ysing the Rossby radius of deformatidfl). The term

state. (1/L3) ¢ in Eq. (91) creates a shielding of the interaction
Statingqg, = const instead of the expressi@®) yields the  petween vorticegsimilar to the Debye shielding in plasma

Gaussian Gibbs state with linear relationship betwgemd  physics on a length scale-Lg. In the limit 1Lz—0, we

. Then, the coefficienty,8 used in Eq.(81) is directly  recover the 2D incompressible equations. For fihitewe

obtained from Eq(83). This is sufficient for the purpose of can extend the statistical theory of the 2D Euler equations to

f|nd|ng the Stat|St|Ca| equ|||br|um but more ref|ned relaX the QG case by S|mp|y rep'ac|ng the Vorucmy W|th the

‘[alztl;)ré?imodels can be used as in the context of QG modeIBOtentlal vorticityZ [25-28.

. . . VI. THE CASE OF A CIRCULAR DOMAIN

D. The incompressible limit OR A CHANNEL

The case of ordinary 2D incompressible turbulence is re-
covered in the limith—H, g—w andu=—¢e,XV. The

relaxation equatiori74) then becomes In a disk, the angular momentum

A. Statistical equilibrium

(;—ltJJr(EV)U:—%Vp+D[Au_—B(t)w2u_], (86) sz h(rxu)d* (92)

where we have used the well-known identity of vector analy-'s conserved. This additional constraint can be accounted for

o — — . by adding a termB\ 6L in the first order variatiori23). We
SIS Au—.V(V_~ u)—VX(qu), which reduces for a t_WO' can write SL= [ sh(r X u),d?r+ fh(e,Xr)- ud?r, and the
dimensional incompressible flow thu=e,XV w. Equation

(86) is valid even ifD is space dependant unlike with a usual second term can be expressed in termaafand 5(V - u) by

- . : o . ; a Helmholtz decomposition dif(e, X r) analogous to Eq9),
viscosity term. In previous publications this equation was followed by an integration by part. This is analogous to the
given only in its vorticity form

fomulas(28) and(29) used for expressing the energy varia-
— tion. We can combine the energy and momentum variations

Jw — .
EJFV((UU) VID{Vw+ B(t)w,V ¢}], (87) by defining

h[u—=\(eXr)]=—e,XVy' +Vo', (93
and the equivalence with E¢B6) is not obvious at first sight

when D is space dependent. At equilibrium, we have frominstead of Eq.9). Adding the new terms in Eq$31) and
Eq. (86) the identity (33) yields the Gibbs state&35) and (41) for the velocity
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u’=u—X\(e,Xr) seen in the reference frame rotating at an-  Finally, in the case of an infinite domain, the two compo-
gular velocity . Accordingly, the expression of the Ber- nents of momentum, as well as the angular momentum are
nouilli function must be modified by a term of centrifugal conserved. This yields to purely translating or purely rotating

force: we must us®’ (¢')=gh+ (u’'?/2)—\?r? instead of
B(¥). We find therefore, that the Gibbs stdis locally av-
eraged velocity fieldis a solution of the shallow water equa-
tion, which is steady in a reference frame rotating at a modi
fied angular velocityQ +\. This velocity is indirectly

determined by the constraint on angular momentum. Not%
that the result can be readily extended to the shallow water

system on the sphere.

In the case of an annulus, the circulatiGn = — fu,dI
around the inner wall is an additional conserved quairtitsy
circulationC_. around the outer wall is also conserved, but it
is related to other conserved quantitiesCas=1"—C_, and
the conservation ofF is already included in the PV conser-
vation). Furthermore, we need in general to get ¢y #0 at
the inner wall(while we can still seiy=0 at the outer wall
As a consequence, a boundary terngy_ 6C_ now appears
in the expressiol(30) for the energy variation. However, we
can directly sebC_ =0, canceling this boundary term, with-
out influence on the independent variablgs (determining

the locally averaged vorticityw= fohpdo), V-u and h.
Therefore, the only modification with respect to the disk is
an additional unknown_ in the definition(10) of ¢, deter-
mined by the corresponding additional constraint.

The case of a straight channel can be viewed as the lim

Gibbs states, as discussed by Chavanis and Sompddiim
the incompressible case.

B. Relaxation equations

Taking the derivative of Eq$94) and(92) with respect to
me and using Eq958) and (59), we obtain the constraints

P= f hJ,,d?r=0, (95)

Lz—f hJ,-rd?r=0. (96)

These constraints can be included in the variational principle
(67) by introducing appropriate Lagrange multipliers de-
noted asB(t)U(t) and B(t)\(t). Then, the results of Sec. V
are generalized simply by replacing the velocityby the
relative velocityu’=u—U(t)e,—\(t)e,Xr where the time
evolution of U(t) and \(t) is obtained by substituting the
optimal current(73), with the above transformation, in con-
straints(95) and (96). In the case of a channel, we have the
additional conserved quantity, = — fu,dx along the upper

wall. Using Eq.(59), we readily find thaC+=waydx=O

of an annulus with a small width, but it can be convenient toas the current,, is parallel to the wall, so the circulation
treat it in itself. Let us consider a straight channel betweerlong each wall is indeed conserved by the relaxation equa-

two walls at coordinatey= *L,/2 with periodic boundary
conditions along th& direction (with domain length_,). In
the absence of Coriolis forcé)=0), thex-wise momentum

sz hu,d?r (94)

is conservedinstead of the angular momentynas well as
the circulation C,=— [u,dx along the upper wall y
=L/2). The boundary conditio(iL0) defining ¢ is replaced
by y=P/L, at the upper wally=L,/2 and =0 (for in-
stancg at the lower wally=—L,/2. Unlike with angular
momentum, we cannot express the variati in terms of
the variations in the independent variablesv - u,h. How-
ever, we have now an additional freedom in the variationa
problem, as we can add a uniform x-wise velocityJe,
(use a reference frame with velocitye,) without influence
on the independent variablesV - u, h. For any choice ob,

we can solve the variational problem with the velodity
=u—Ue,, corresponding enerdy’ =E+MU?/2—PU, and
upper wall circulationC’Jr:C+—ULx. This yields a Gibbs
state(35),(38),(41) representing a steady solution of the shal-
low water equation in a reference frame moving with veloc-

tions.

VIl. CONCLUSION

We have applied equilibrium statistical mechanics to pre-
dict the self-organization of the shallow water system, as-
suming that the velocity divergence as well as the height
field h remain smooth, while vorticity undergoes filamenta-
tion into fine-scale structures. This regime is expected in the
absence of shocks, typically for flows submitted to a strong
Coriolis effect, for which our present approach generalizes
the earlier QG(incompressibleresults. We predict an orga-
nization into a steady flow, after smoothing of the fine-scale
vorticity fluctuations. It is characterized by a particular
monotonic relationship between PV and the stream function

, defined by Eq(12). It is a balanced motion, reducing to
he geostrophic balandd9) for unidirectional solutions and
to the cyclostrophic baland&7) for axisymmetric ones. In
other words, the wave mode vanishes. In domains with
symmetries by translation or rotation, steadily translating or
rotating solutions are obtainddee Sec. VI It is remarkable
that these dynamical properties emerge from entropy maxi-
mization. Moreover, the Boltzmann entrof®1) is the only
expressionof the general forni22)] that yields a solution to
the maximization problem, unlike in the Euler case.

ity Ue,. Among these states, the ones with the right value of The predicted state appears as the most likely result of

the momentumP= fhu,d?r will be the actual solutions.
Families of Gibbs states with the same structure translated i
the x direction are obtained, as discussed by Somnwiral.
[18] in the incompressible case.

random PV reorganizatio(stirring) taking into account en-

argy conservation. This provides a general explanation for
the emergence of such steady flow structures—jets or iso-
lated vortices—a phenomenon widely observed in natural
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systems and numerical simulations. Practical predictions caposed by Holloway{32] as a driving of a mean flow by
be obtained by solving the systg@?) and(43), reducing to  random geostrophic turbulence in the presence of bottom
Eq. (52 in the unidirectional case. It is, however, more con-topography. This was obtained by another statistical mechan-
venient in general to solve relaxation equations as develope&ds approach for truncated spectral models of the QG system,
in Sec. V. It involves modified shallow water equatidd8),  put it can be viewed as a particular limit of the present ap-
(60), and(74) and a relaxation equatiof®2) with a current  proach[27]. This forcing here naturally appears in associa-
(69) for each PV level. The case of two PV levels is explice-tion with the eddy diffusion of PV, as the result of the energy
ted with more details in Sec. V C. For the purpose of calcuonservation constraint in the maximum entropy production
lating the equilibrium states, the advective terms of thesgyqcedure. Note that more direct justification of this term has
equationdon the left-hand sidecan be dropped out, and the ooy 4150 obtainedin the incompressible Euler casin

diffusion coefficientD is arbitrary (but positive. The time . _ ; -
evolution relaxes towards a Gibbs state, and it selects a truterms of kinetic models by Chavariié8-50. In this point

. X . 6t view, the drift term is a result of a polarization process.
entropy maximum among the different solutions of Het) These kinetic models yield more complex expressions of the

\;eddy fluxes, involving integral over previous times, which

mixing with the only constraint of the conservation laws. The'€dUce to our MEP expression only close to an equilibrium
system may not actually reach such equilibrium by free evoState. Moreover, as discussed in R¢&S] and[54], the as-
lution for various reasons, as discussed in the IntroductiorSUmption of a global energy constraif@S) should be re-
In particular, systems of geophysical interest are permanentijlaced with a more local condition in large systems, and
forced instead of freely decaying. However, we can still usg'€glecting the energy of subgrid-scale fluctuations is appro-
the relaxation equations as subgrid-scale models for a timgriate only when the cutoff is much smaller than the Rossby
evolution simulation of the explicitly resolved scales. Theradius of deformation. However, the fundamental existence
idea is that eddy fluxes will tend to drive the system towardof a drift term, a “generalized neptune effect” in addition to
the statistical equilibrium. Then the diffusion coefficient hasPV eddy diffusion, is confirmed by all these approaches. This
to be adjusted to “realistic” valueg27]. allows one to incorporate the fruitfull idea of PV uniformiza-
This subgrid-scale modeling involves a term of PV eddytion in operational modeling. The principle of extension to
diffusion and aorcing or drift term. The latter is reminiscent multilayer shallow water systems, such as the model
of the “neptune” effect—an intriguing forcing effect pro- MICOM [34] used in oceanography is straightforward.
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